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EDITORIAL MESSAGE

Progress in Physics: 10 Years in Print

In January, 2015, we celebrate first 10 years of our journal

Progress in Physics. This is a good time to remember what

events led to the idea of the journal, and how the journal was

founded.

Ten years ago, in the fall of 2004, CERN Document

Server has changed its policy so that it closed its door for

all future pre-prints submitted by non-CERN employee. All

other persons were advised to submit their papers to Cornell

E-Print Archive (known as arXiv.org).

The main problem of this change was that Cornell E-Print

Archive only accept papers from people who have a scientific

institute affiliation. This policy continues to this day, and is a

necessary condition for consideration of papers in almost all

modern scientific journals.

This was a serious impact to the scientific community,

where so many researchers continue their studies in between

short-term grants, or even continue their scientific activity as

independent researchers. They all are not affiliated to any sci-

entific institution. So, they all loose their fundamental right

to be published in scientific journals.

But it was not always. In already the beginning of the

20th century, every person was able to submit a paper to any

scientific journal. And this paper was considered according

to its real scientific importance, not the formal degree or sci-

entific institute affiliation of the submitter. Otherwise, many

great scientists such as Einstein and others would never have

published their scientific works.

However, in the early 20th century, science was a matter

of a very few people. With the progress of democracy and

improved living mass of the people, in the 1950–1960’s, sci-

ence has become a professional field of activity of hundreds

of thousands and even millions of people in the world. Mas-

sive investment in research activities have led to the fact that

the scientific community is filled with people who do not view

science as a search for truth but as “employment”. Many sci-

entific workers speak frankly to each other that we went to the

science just in order “to get good income” thus doing some

formal activities in the field which is a hard to understand for

investors who pay for it all. Such “research staff”, not be-

ing burdened with a large intellectual tension of the solution

of scientific problems were much more socially active than

the real scientists. Therefore, they quickly and systematically

took formal positions in the scientific community, including

scientific journals. As a matter of fact that they considered

real scientists as potentially dangerous persons, who may po-

tentially qualify for their sure and well-paid job positions. To

defend themselves, they built a complicate bureaucratic sys-

tem, where, as Grisha Perelman said very well, no one re-

searcher who is really busy with research will waste so much

time and effort to fill out all the paperwork for a grant. Only

familiarity in the editorial board of the scientific journal, or

belonging to the “friendly” scientific group gives the oppor-

tunity to publish your article.

In this way, the scientific bureaucracy was born. This sit-

uation continues in the scientific community until this day.

In this background, CERN Document Server was the

solely possibility to publish research papers for the scientists,

who are not joined into “groups” or do not belong to “scien-

tific clans”. In the fall of 2004, this window was closed.

It is comical, but even papers authored by Brian Joseph-

son (Nobel Prize in Physics, 1973) were refused by Cornell

E-Print Archive. As was claimed the reason was that he has

right only to submit articles on his very particular field of

physics, and has not rights to submit articles on other field of

physics where he “cannot be an expert”.

Correspondence among Josephson and other researchers,

who were thinking of the future of the scientific community,

has began. In the course of correspondence with Josephson,

I met Florentin Smarandache. We both were active CERN

E-Print Server users. I looked for another possibility to pub-

lish a series of research papers authored by me and Larissa

Borissova, my closest colleague and friend. In our common

discussion with Florentin, I told him that we must establish a

new journal of physics: it is better and easier than to fight for

influence in existing journals. Do you like to see this journal

in print? — Florentin replied. So, Progress in Physics was

established by our common power. It was January, 2005.

Then I wrote Declaration of Academic Freedom, to fix

the fundamental rights and freedoms allowed among the sci-

entific community. This text, known also as Academic Bill of

Rights is now published in ten languages. All that we do in

our journal, is according to the articles of the Bill.

During the first year, we had no many authors and readers.

Nevertheless, ten years later, i.e. now, the journal has grown

very much. We now have a stable traffic in the range from

25,000 to 35,000 downloaded papers per month, with some

peaks in the months when a hot research is published.

Despite some difficulties, the journal is now stable. We

allow every person to submit a paper, with the warranty that

the submission will be reviewed according only to scientific

judgements, independent on the personality of the submitter.

Our personnel works on voluntary basis, to keep the author’s

fee as low as possible. I hope that first 10 years of Progress

in Physics will be the beginning of the long term life of the

journal, among the other respected journal of physics.

Dmitri Rabounski, Editor-in-Chief

Dmitri Rabounski. Progress in Physics: 10 Years in Print 3
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Trapping Regions for the Navier-Stokes Equations

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209. E-mail: cafeinst@msn.com

In 1999, J. C. Mattingly and Ya. G. Sinai used elementary methods to prove the exis-

tence and uniqueness of smooth solutions to the 2D Navier-Stokes equations with peri-

odic boundary conditions. And they were almost successful in proving the existence and

uniqueness of smooth solutions to the 3D Navier-Stokes equations using the same strat-

egy. In this paper, we modify their technique to obtain a simpler proof of one of their

results. We also argue that there is no logical reason why the 3D Navier-Stokes equa-

tions must always have solutions, even when the initial velocity vector field is smooth;

if they do always have solutions, it is due to probability and not logic.

1 Introduction

In this paper, we examine the three-dimensional Navier-

Stokes equations, which model the flow of incompressible

fluids:

∂ui
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u j

∂ui
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, (1)

where ν > 0 is viscosity, p is pressure, u is velocity, and t > 0

is time. We shall assume that both u and p are periodic in

x. For simplicity, we take the period to be one. The first

equation is Newton’s Second Law, force equals mass times

acceleration, and the second equation is the assumption that

the fluid is incompressible.

Mattingly and Sinai [5] attempted to show that smooth

solutions to 3D Navier Stokes equations exist for all initial

conditions u(x, 0) = u0(x) ∈ C∞ by dealing with an equivalent

form of the Navier-Stokes equations for periodic boundary

conditions:

∂ωi

∂t
+

∑

j=1,2,3

u j
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∂x j

=
∑
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where the vorticity ω(x, t) = ( ∂u2

∂x3
− ∂u3

∂x2
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∂x3
,
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).

Their strategy was as follows: Represent the equations (2)

as a Galerkin system in Fourier space with a basis {e2πikx}k∈Z3 .

A finite dimensional approximation of this Galerkin system

can be associated to any finite subset Z of Z3 by setting

u(k)(t) = ω(k)(t) = 0 for all k outside of Z. For each fi-

nite dimensional approximation of this Galerkin system, con-

sider the system of coupled ODEs for the Fourier coefficients.

Then construct a subset Ω(K) of the phase space (the set

of possible configurations of the Fourier modes) so that all

points in Ω(K) possess the desired decay properties. In addi-

tion, construct Ω(K) so that it contains the initial data. Then

show that the dynamics never cause the sequence of Fourier

modes to leave the subset Ω(K) by showing that the vector

field on the boundary ofΩ(K) points into the interior ofΩ(K).

Unfortunately, their strategy only worked for the 3D

Navier-Stokes equations when the Laplacian operator ∆ in

(2) was replaced by another similar linear operator. (Their

strategy was in fact successful for the 2D Navier-Stokes equa-

tions.) In this paper, we attempt to apply their strategy to the

original equations (1).

2 Navier-Stokes equations in Fourier space

Moving to Fourier space where
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∑

k∈Z
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let us consider the system of coupled ODEs for a finite-

dimensional approximation to the Galerkin-system corres-

ponding to (1),

du
(k)

i

dt
=

(

∑

q+r=k

q,r∈Z

∑

j=1,2,3

−2πiq ju
(q)

i
u

(r)

j

)

−

− 4π2ν|k|2u
(k)

i
− 2πiki p

(k) i = 1, 2, 3, (4)

∑

i=1,2,3

kiu
(k)

i
= 0 , (5)

where Z is a finite subset of Z3 in which u(k)(t) = p(k)(t) =

= 0 for each k ∈ Z3 outside of Z. Like the Mattingly and

Sinai paper, in this paper, we consider a generalization of this

Galerkin-system:

du
(k)

i

dt
=

(

∑

q+r=k

q,r∈Z

∑

j=1,2,3

−2πiq ju
(q)

i
u

(r)

j

)

−

− 4π2ν|k|αu
(k)

i
− 2πiki p

(k) i = 1, 2, 3, (6)
∑

i=1,2,3

kiu
(k)

i
= 0 , (7)
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where α > 2. Multiplying each of the first three equations by

ki for i = 1, 2, 3 and adding the resulting equations together,

we obtain
∑

q+r=k

q,r∈Z

∑

j=1,2,3
l=1,2,3

−2πiklq ju
(q)

l
u

(r)

j
= 2πi|k|2 p(k), (8)

since
∑

i=1,2,3 ki
du

(k)
i

dt
= 0 (by equation (7)). Then substituting

the above calculated expression for p(k) in terms of u into (6)

we obtain
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And since
∑
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j
= 0 and q j+r j = k j, we can substitute

k j for q j:
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3 A new theorem

Now, we state and prove the following theorem:

Theorem: Let {u(k)(t)} satisfy (10), where α > 2.5. And let

1.5 < s < α − 1. Suppose there exists a constant C0 > 0

such that |u(k)(0)| 6 C0|k|
−s, for all k ∈ Z3. Then there exists

a constant C > C0 such that |u(k)(t)| 6 C|k|−s, for all k ∈ Z3

and all t > 0. (The constants, C0 and C, are independent of

the setZ defining the Galerkin approximation.)

Proof: By the basic energy estimate (see [1,2,7]), there exists

a constant E > 0 such that for each t > 0 and for any finite-

dimensional Galerkin approximation defined by Z ⊂ Z3, we

have
∑

k∈Z

∑

i=1,2,3 |u
(k)

i
(t)|2 6 E. Hence, for any K > 0, we

can find a C > C0 such that |ℜ(u(k))| 6 C|k|−s and |ℑ(u(k))| 6

C|k|−s, for all t > 0 and k ∈ Z3 with |k| 6 K. Now let us

consider the set,

Ω(K) =

{(

ℜ(u(k)),ℑ(u(k))

)

k∈Z3
: |k| > K ,

|ℜ(u(k))| 6 C|k|−s,

|ℑ(u(k))| 6 C|k|−s
}

.

(11)

We will show that if K is chosen large enough, any point

starting in Ω(K) cannot leave Ω(K), because the vector field

along the boundary ∂Ω(K) is pointing inward, i.e., Ω(K) is a

trapping region. Since the initial data begins inΩ(K), proving

this would prove the theorem.

We pick a point on ∂Ω(K) where ℜ(u
(k̄)

i
) or ℑ(u

(k̄)

i
) =

±C|k̄|−s for some k̄ ∈ Z such that |k̄| > K and some i ∈

{1, 2, 3}. (For definiteness, we shall assume that ℜ(u
(k̄)

i
) =

C|k̄|−s, but the same line of argument which follows also ap-

plies to the other possibilities.) Then the following inequali-

ties hold when K is chosen large enough:
∣
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j=1,2,3
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4π|k̄ j|E < 4π2ν|k̄|α
C

|k̄|s
= 4π2ν|k̄|α|ℜ(u

(k̄)

i
)|. (12)

This establishes that the vector field points inward along

the boundary of Ω(K) for all t > 0. So the trajectory never at

any time leavesΩ(K). Then we have the desired estimate that

|u(k)(t)| 6 C|k|−s for all t > 0. �

4 Discussion

Just as in the 1999 paper by Mattingly and Sinai [5], an exis-

tence and uniqueness theorem for solutions follows from our

theorem by standard considerations (see [1,2,7]). The line of

argument is as follows: By the Sobolev embedding theorem,

the Galerkin approximations are trapped in a compact subset

of L2 of the 3-torus. This guarantees the existence of a limit

point which can be shown to satisfy (10), where Z = Z3.

Using the regularity inherited from the Galerkin approxima-

tions, one then shows that there exists a unique solution to the

generalized 3D Navier-Stokes equations where α > 2.5.

The inequality (12) in the proof of our Theorem is not

necessarily true when α = 2. Because of this, there is noth-

ing preventing the solutions to (10) from escaping the region

Ω(K) when α = 2. Hence, there is no logical reason why the

standard 3D Navier-Stokes equations must always have solu-

tions, even when the initial velocity vector field is smooth; if

they do always have solutions, it is due to probability (see [6])

and not logic, just like the Collatz 3n + 1 Conjecture and the

Riemann Hypothesis (see [3, 4]). Of course, it is also possi-

ble that there is a counterexample to the famous unresolved

conjecture that the Navier-Stokes equations always have so-

lutions when the initial velocity vector field is smooth. But as

far as the author knows, nobody has ever found such a coun-

terexample.
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Majorana Particles: A Dialectical Necessity and not a Quantum Oddity

Abdul Malek

980 Rue Robert Brossard, Québec J4X 1C9, Canada. E-mail: abdulmalek@qc.aibn.com

The confirmation of the existence of Majorana particles is the strongest ever imperative

for a dialectical perspective for physics; and may have implications for epistemology

from the sub-nuclear to the cosmic scale. As the Majorana particle suggests matter at its

most fundamental level must be viewed as a composite of the “unity of the opposites”

— a contradiction, the resolution of which imparts “motion” to matter and hence the

dialectical assertion that “there can be no matter without motion and no motion without

matter”. The existence of Majorana particles show that the anti- dialectical conception

of matter as composed of distinctive and unitary particles like the fermions and the

bosons at the most fundamental level, is faulty and is untenable. These types of sharp

distinctions and categories of matter are indeed to be found in nature, but with relative

and conditional validity.

For dialectics, any tangible material existence is a compos-

ite of the unity of the two opposites; or an “Absolute Identity

of identity and non-identity” — a contradiction and a ratio-

nale for its change, motion, development, evolution and so

on. At the most fundamental level this contradiction is the

unity of the opposites of “being” and “nothing” — an inter-

penetration of the opposites and/or their inter-conversion to

each other. Any synthesis to a different level is infected with

this and its own peculiar new contradictions. The newly con-

firmed [1] existence of the Majorana particle is an affirmation

of this dialectical law and at the same time it is a negation of

the (artificial) division into the absolute and the unitary cat-

egories of the fundamental particles in nature as bosons and

fermions. This differentiation is indeed possible from an anti-

dialectical perspective, but only with relative and conditional

validity. The three laws of dialectics, namely i) the unity or

the interpenetration of the opposites, ii) the inter-conversion

of quality and quantity and iii) the negation of the negation

mediated by chance and necessity; provide an essential ba-

sis for an understanding of nature from the microcosm to

the macrocosm [2]. Any attribute, characteristics, manifes-

tation, developments, etc. of matter in dialectical epistemol-

ogy, therefore, must be found primarily within matter itself

and through its contradictions and not through any external

agency.

Official physics continues to operate under the perspective

of what Hegel termed as the “view of understanding” which

roughly corresponds to causality. This view follows the rules

of formal logic, and Aristotle’s doctrine of “unity, opposition

and the excluded middle” and with the mutual exclusion of

the opposites. The opposites in this view stand in absolute

opposition to each other and remain the same forever once

brought into existence by an external agency. This “good old

commonsense” view of the world though approximate and

faulty at human scale; was in essence satisfactory enough to

serve humanity and natural science reasonably well. But the

advent of the idea of evolution in biology and the quantum

phenomenon in physics fundamentally undermined the valid-

ity of the notions of the “view of understanding” in episte-

mology, particularly in modern physics.

Even before the discovery of the quantum phenomena;

thinkers starting from Heraclitus through Epicurus, Hegel,

Marx and Engels showed that dialectics offers a better epis-

temological tool for an understanding of nature, life, history,

society and thought. The existence of polarity and the “unity

of the opposites” and hence motion, was shown to manifest

itself in all aspects of the world But of course, dialectics that

denies the stability or the permanence of what exists is in-

imical to a class based social structure, which insists on per-

manence, continuity, certainty etc. Of necessity, and because

of its very nature as the conservative, the resisting and the

preserving side of what exists; the “view of understanding”

historically became the dominant epistemological tool, in-

cluding that of the natural sciences. The anti-dialectical no-

tion of the unitary and the absolutely defined “fundamental

building blocks” or fundamental elementary particles in na-

ture and their classification into fermions and bosons as de-

veloped through the quantum field theories of modern particle

physics is a case in point.

The Italian physicist Ettore Majorana in his 1937 paper

[3] raised serious doubt about such absolute categorization

and forced the dialectical perspective on modern particle

physics; shortly after Paul Dirac gave the relativistic formula-

tion of quantum mechanics for the electron [4] and conceived

the theoretical basis for describing the spin 1/2 particles that

would divide all possible matter particles into two mutually

exclusive groups known as fermions and bosons, based on

their spin properties. Following the mathematical logic and

the symmetry rules of Dirac; Majorana in contradiction to

Dirac, showed that such an absolute differentiation is not pos-

sible, because both the fermions and the boson can contain

their opposites within themselves as the dialectical unity of
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the opposites.

Paul Dirac ushered in the revolutionary idea of the anti-

particles in nature as a dialectical necessity. Dirac’s epoch

making discovery that anti-particles must exist as part of the

real world in the context of a real/virtual dialectical category

and that the quantum vacuum is seething with virtual parti-

cles with momentary existence and which can turn into real

particles through quantum tunnelling; for the first time gave

validity to the dialectical speculation of Hegel’s fundamental

triad of “being-nothing-becoming” as the mode of “coming

into being and passing out of existence” of matter as elemen-

tary particles in nature [5].

The developments in particle physics from the turn of the

20th century led to the discovery of multitude of so-called

“elementary particles” of matter/energy. These were eventu-

ally rationalized based on their integral or fractional electric

charge and fractional/integral spin values into two groups of

matter particles, namely Dirac fermions with fractional spin

values and bosons (named after the Indian physicist

S. N. Bose) with integral spin values. In his attempt to de-

velop a theoretical framework for describing spin 1/2 parti-

cles, Dirac thereby made a revolutionary discovery of hith-

erto unknown dialectical realm of the “unity of the oppo-

sites” of matter/antimatter. To describe the spin 1/2 particles,

Dirac found it necessary to incorporate imaginary and com-

plex quantities in his equations that gave rise to the complex-

conjugate field φ∗ of the real field φ, where the complex- con-

jugate fields φ∗ can accommodate the antiparticles. This is

a new aspect of reality brought forth by the developments in

quantum mechanics. Physics previously only dealt with in-

tegral spins of 0, 1 and 2 in its equations namely, the Klein-

Gordon, Maxwell (electromagnetism) and Einstein (general

relativity) equations, respectively; which readily accommo-

date real fields.

The concept of antiparticles in nature means that, as a di-

alectical necessity all particles must have or be their own an-

tiparticles. This “unity of the opposites” may manifest either

in the same body like the two poles of a magnet or on sepa-

rate bodies like the positive and negative electric charge or in

the same body simultaneously containing the opposites con-

tinuously exchanging into their opposite polarity; depending

on the nature of the exchange force that keep the two oppo-

sites together and the external circumstances under which this

force operates. The latter case is manifested for example in

positronium or meson where (though very unstable) matter

and antimatter reside together as the unity of the opposites.

Both positronium and mesons can exist even as their dim-

mers like the dipositronium and the mystery meson (X3872)

respectively. Even the most pure and holy of all things in the

world, namely the light photon has opposite characteristics

of a particle and a wave and also is a composite of two mat-

ter — antimatter particles and can be resolved into a pair of

the particles such as the electron-positron pair if the photon

has enough energy equivalent of the mass of the particle pair.

All these particles probably exist in Majorana type formation

where the two opposites exist in the same body through rapid

inter-conversion of the one opposite to the other.

The conundrum for anti-dialectical official physics is that

the existence of antiparticle itself is problematic. In the nar-

rative of the big bang theory all matter (and admittedly now

antimatter) was created in one fell swoop. Any antimatter that

was created was conveniently annihilated by reaction with

matter, so that only matter (which arbitrarily was in relative

excess) now prevails in the universe. Any new antimatter

can now only be produced in negligible quantity through sec-

ondary processes; but the existence of any tangible amount

(or even in large scale equivalent to matter); of antimatter is

therefore, impossible. This author has previously challenged

this contention of official physics; as many cosmic phenom-

ena and the dynamics of the galaxies can be attributed to

large-scale presence of antimatter in the universe [6].

The existence of anti-particle as such is not a big prob-

lem for anti-dialectical official physics. Because neutral and

integer spin particles (like bosons) can be viewed as their

own antiparticles, as they must be created by fields φ that

obey φ = φ∗ — that is, real fields, like electromagnetism

and gravity discussed above. What is “fundamentally con-

fusing” (to use the term expressed by some famous physi-

cists) for official physics is that some fermions with electric

charge and spin 1/2 must also be their own antiparticles as

Majorana (and dialectics) asserted. These fermions already

have their anti-particles that exist separately. For example the

neutron even with 0 charge and spin 1/2 has its antiparticle —

the anti-neutron, as electron and proton have their antiparti-

cles as positron and anti-proton respectively. Why then the

Dirac fermions still should behave as their own antiparticle

in one single body as the unity of the opposites under spe-

cial circumstances like for example positronium or pion? It

is simply that matter and antimatter in the Majorana parti-

cles has undergone a qualitative change and now reside in the

same entity (instead of different ones) like the two opposites

poles of a magnet or to take the analogy further, like a trans-

gender person. The matter and antimatter characteristics in

the Majorana particle did not vanish, but are maintained in a

different way, probably through rapid inter-conversion of the

one to the other through the exchange of some force parti-

cles. This is the same as in the case of positronium or meson

(or even in the inter-conversion of nucleons in the atomic nu-

cleus). In meson for example (a simpler case) the quark and

the antiquark must undergo rapid interchange of identity into

each other (through exchange of force particles) to remain in

a stable form. This seems evident; for example in the case

of pi-meson, an up and anti-down quark combination has a

mass-energy of only 140 MeV; yet the same quark combina-

tion but only with different spin in a rho-meson has a mass-

energy of 770 MeV!

How the Majorana particle emerges in the experimental

setup of Ali Yazdani’s group described in [1] is a matter of
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speculation at this stage. It seems that the super-conducting

magnet (two opposing factors) somehow polarizes the elec-

tron, probably through some new kind of unifying electo-

magneton coupling interaction, forming the end-to-end linear

chain of the polarized electrons within the magnet, turning

them into particles like the neutrinos, or mesons or even pho-

tons with the unbalanced opposite polarity emerging at the

two ends of the magnet

The random and catastrophic gamma ray bursts (GRBs)

observed in the cosmos can be attributed to the chance ac-

cumulated cosmic scale Majorana type formation of matter

and anti-matter clusters, or somewhat like speculated boson

stars [7]; probably mediated by the magnatic fields of the

host galaxies and their instant annihilations as gigantic cos-

mic “fire-balls”; emmiting high energy gamma rays, triggered

sponteneously or by some outside events [2]. GRBs are short

duration (10 milliseconds to several minutes) intense flashes

of high energy (from KeV to MeV to GeV range) gamma rays

associated with extremely energetic events in distant galaxies

that appear from random locations isotropically distributed

in the celestial sphere. The progenitors of these astrophysi-

cal phenomena remain largely unknown [8]. These energetic

events mostly emmiting gamma ray photons probably occur

from various scale matter-antimatter annihilation processes.

Indeed in the lower energy range, the most dominant peak

centered around ∼ 1 MeV probably corresponds to the mass

equivalent of the elctron-positron pair.

Like the quantum phenomena itself, dialectics and the

Majorana particle are counter-intuitive for anti-dialectical

physics. The discovery of the Majarona particle represents

another blow to the anti-dialectical perspective of modern

physics and shows the futility of hunting for absolutely uni-

tary fundamental constituents of matter in nature, like the

magnetic monopole.
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LETTERS TO PROGRESS IN PHYSICS

An Essay on Numerology of the Proton to Electron Mass Ratio

Alexander Kritov
E-mail: alex@kritov.ru

There are few mathematical expressions for calculation proton to electron mass ratio

presented. Some of them are new and some are not. They have been analysed in terms

of their simplicity, numerical significance and precision. Expressions are listed in the

structured manner with comments. The close attention should be paid to a comparison

of the formula similarity via their precision. A brief review of the different attempts in

similar search is given.

1 Introduction

The founding of the analytical expression for fundamental di-

mensionless constant was a dream of a physical science for

many years. There are many papers in literature trying to de-

rive or explain fine structure constant from pure numerical

theories. Such hypothetical theories can be divided into two

types. The first one proposes that the dimensionless constants

of the Nature are not actually constant and suggests using

some close numbers which deviate from the original ones.

This type of the theories requires further experimental re-

search because deviations of the dimensionless constants are

still unknown with good precision. For example G. Gamov

following Eddington’s belief explained the fine structure con-

stant suggesting that it is equal to exactly 137 but it differs

from exact number because of some small quantum pertur-

bations similar to those in the case of the Lamb-Rutherford

effect [1]. The second type of the theories is less common, it

suggests exact relation for the dimensionless constants which

is close to current experimental value. Usually such hypothe-

ses derive huge and unnatural formulas that lack of elegance

and explain-ability. Moreover physical justification for such

expressions doesn’t have enough arguments or the physical

model is absent. However some of such recent theories may

look interesting and promising in the view of the the pre-

sented material [2–4].

The part of the physics which involves dimensionless con-

stants is very prone to invasion of numerology. However such

cooperation has not been shown to be efficient yet. Though it

is worth to notice that numerology itself stays very close to al-

gebra and number theory of mathematics. Numerology itself

can be considered as ancient prototype of the modern algebra

(as well as alchemy was a base for a modern chemistry) and

as it was said by I. J. Good: “At one time numerology meant

divination by numbers, but during the last few decades it has

been used in a sense that has nothing to do with the occult

and is more fully called physical numerology” [5]. At this

perspective, physical numerology seems to be a way through

back-door which researches also try to enter and finding a key

by trying to pickup right numbers. Such attempts should not

be ignored as they may provide not only new clues for the re-

searchers, but also in case of null-result they might be an evi-

dence for another consistent principle which can be explored

further.

2 Background

The search for mathematical expression for this dimension-

less number motivated many serious scientists. A sufficient

theory on particle masses and their ratios is not yet ready. The

mass ratio of proton to electron (µ = mp/me) — two known

stable particles which belong to two different types (leptons

and hadrons) — still remains the mystery among other di-

mensionless numbers.

In 1929 Reinhold Fürth hypothesized that µ can be de-

rived from the quadratic equation involving the fine structure

constant [6]. Later on in 1935, A. Eddington who accepted

some of Fürth’s ideas presented the equation for proton to

electron mass ratio calculation (10µ2 − 136µ + 1 = 0) which

appeared in his book “New Pathways in Science” [17]. How-

ever both approaches can not be used nowadays as they give

very high deviation from the currently known experimental

value of µ, so they are not reviewed in present work. Later on

in 1951, it was Lenz [7] (but not Richard P. Feynman!) who

noted that µ can be approximated by 6π5. In 1990, I.J. Good,

a British mathematician assembled eight conjectures of nu-

merology for the ratio of the rest masses of the proton and the

electron.

Nowadays proton to electron mass ratio is known with

much greater precision: µ = mp/me = 1836.15267245(75),

with uncertainty of 4.1 × 10−10 (CODATA 2010, [4]). Re-

cently the professional approach to mathematically decode

mp/me ratio was done by Simon Plouffe [8]. He used a large

database of mathematical constants and specialized program

to directly find an expression. Alone with his main remark-

able result for the expression for µ via Fibonacci and Lucas

numbers and golden ratio he also noted that expression for µ

using π can be improved as 6π5 + 328/π8, but he concluded

that this expression: “hardly can be explained in terms of

primes and composites”.
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Expression Value Ref.

µ =

(

7

2

)6

1838.2656 (1 × 10−3) 1.

µ = sin

(

π

5

)

· 55 1836.8289 (4 × 10−4) 2.

µ =
17

4
432 1836.0000 (8 × 10−5) 3.

µ = 150
3
2 − 1 1836.1173 (2 × 10−5) 4.

µ = 6π5 1836.1181 (2 × 10−5) 5.

µ =
200300

7103
1836.1179 (2 × 10−5) 6.

µ =
22

(5 · 3 · α)2
1836.1556 (2 × 10−6) 7.

µ =
5 · 73

6 · 67
137π 1836.1514 (6 × 10−7) 8.

µ =
2435

5α−1
103π 1836.15220 (3 × 10−7) 9.

µ =
e8 − 10

φ
1836.15301 (2 × 10−7) 10.

µ =
40

3
α−1 +

800

9π2
1836.15298 (2 × 10−7) 11.

µ =
864

313
1836.15239 (2 × 10−7) 12.

µ =
22672

5 · 7 · 11 · α−1
6π 1836.1525639 (6 ∗ 10−8) 13.

µ =
1125

4
5 7

2
5 e3

6 · 2
4
5

1836.1526703 (1 × 10−9) 14.

µ =
55 · 5

3
2 11

15
32

φ
1

16

1836.1526748 (1 × 10−9) 15.

µ =
3

15
4 5

9
4 14

3
2

π3e
3
4

1836.1526719 (1 × 10−10) 16.

3 Variability

During the last decade a subject of variability of µ appeared

under heavy debate and serious experimental verifications.

The main experimental task is to distinguish cosmological

red-shift of spectral lines from the shift caused by possible

variation of µ. There is also proposed method to observe

absorption spectra in the laboratory using the high precision

atomic clocks.

Reinhold et al. [9] using the analysis of the molecular hy-

drogen absorption spectra of quasars Q0405-443 and Q0347-

373 concluded that µ could have decreased in the past 12

Gyr and ∆µ/µ = (2.4 ± 0.6) × 10−5. This corresponds to

entry value of µ= 1836.19674. King et al. [9] re-analysed

the spectral data of Reinhold et al. and collected new data

on another quasar, Q0528-250. They estimated that ∆µ/µ =

(2.6± 3.0)× 10−6, different from the estimates of Reinhold et

al. (2006). So the corresponding value for maximal deviated

µ to be something around 1836.1574. The later results from

Murphy et al. [15] and Bagdonaite et al. [2] gave a stringent

limit ∆µ/µ < 1.8 × 10−6 and ∆µ/µ = (0.0 ± 1.0) × 10−7 re-

spectively. However these deviations could be valid only for

the half of the Universe’s current age or to the past of 7 Gyr

which may not be enough for full understanding of the evo-

lution of such variation. The results obtained by Planck gave

∆α/α = (3.6 ± 3.7) × 10−3 and ∆me/me = (4 ± 11) × 10−3 at

the 68% confidence level [13] which provided not so strong

limit comparing to found in [9] and [10].

At first sight the variation, if confirmed, may seem to

make the numerical search for the mathematical expression

meaningless. However possible variability of the µ should

not prevent such search further, because the variation means

one has to find a mean value of its oscillation or the beginning

value from where it has started to change. And such variation

would give a wider space for the further numerical sophistica-

tion because such value can not be verified immediately as we

currently lack experimental verification of the amount of such

change. If the fundamental constants are floating and the Na-

ture is fine-tuned by slight the ratio changes from time to time,

even so, there should be middle value as the best balance for

such fluctuations. In this sense numerologists are free to use

more relaxed conditions for their search, and current the pre-

cision for µ with uncertainty of 2× 10−6 (as discussed above)

may suffice for their numerical experiments. The formulas

listed after number 7 in the table below do fall into this range.

4 Comments to the table

1. This expression is not very precise and given for its

simple form. Also the number (7/2) definitely has cer-

tain numerological significance. The result actually

better fits to the value of the mn/me ratio (relative un-

certainty is 2 × 10−4). It is not trivial task to improve

the formula accuracy, but why not, for example:

µ =

(

7

2

)8
9 · 13

10π · α−1
(relative error: 10−6).

2. It is well known [8] that mp/mn ratio can be well ap-

proximated as cos

(

π

60

)

with relative uncertainty of

6 × 10−6. So this is an attempt to build the formula

for mp/me ratio of similar form. Next more precise for-

mula of the same form would be: µ =
1743

1937
sin

(

π

674

)

=
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1836.1526661 (relative error is 3 × 10−9). In the table

it would be placed between number 13 and 14.

3. It was Werner Heisenberg in 1935 [14] who suggested

to use number 2433 (which is equal to 432) to calculate

alpha as α−1 = 432/π, so mp/me ratio can be also ob-

tained approximately via 432. The expression can be

rewritten as 1836 = 17 · 108 (the number 108 was con-

sidered to be sacred by ancients). There are other pos-

sible representations for the number 1836 which were

noticed in the past, for example: 1836 = (136 ·135)/10

(see review in [5] and [22]).

4. This expression has some certain theoretical base re-

lated to original R. Fürth ideas [6], but it won’t be dis-

cussed here. The precision has the same order as fa-

mous 6π5.

5. This is a Lenz’s formula and it remains the favorite

among the physicists. Recently Simon Plouffe also

suggested yet another adjustment to this formula as fol-

lowing: µ =
1

5 cosh(π)
+ 6π5 +

1

5 sinh(π)
which looks

remarkably symmetric and natural. The relative error

is also extremely good: 4 × 10−9. This formula has not

been published before, it definitely has to attract further

attention of the researchers.

6. The simplest way to approximate mp/me ratio using

powers of 2 and 7. Similar formula: µ =
35716

242
.

7. The elegant expression which uses almost ’kabalistic’

numbers 22, 5, 3 and fine structure constant. Other pos-

sible expression with similar look and with the same

precision: µ =
576

2127325
. Being combined together one

can derive approximation for fine structure constant as

137.035999761 (with good relative deviation of

5 × 10−9): α−2 =
578

11 · 2127323
.

8. Parker-Rhodes in 1981, see [21] and review in [5]. Mc-

Goveran D.O. [20] claimed that this formula does not

have anything in common with numerology as it was

derived entirely from their discrete theory.

9. This elegant expression uses only the fine structure

constant α, powers of 2, 3, 5 and the number 103. As

J.I. Good said: “the favoured integers seem all to be of

the form 2a3b ” [5].

10. By unknown source. No comment.

11. The expression can be also rewritten in more symmet-

ric form: µ = 2















20

3
α−1 +

(

20

3π

)2














. It can be noted

that the number (20/3) appears in the author previous

work [18] in the expression for the gravitational con-

stant G.

12. One of the found expressions by author’s specialized

program. The search was performed for the expression

of the view: µ = p
n1

1
p

n2

2
p

n3

3
p

n4

4
, where pi — some prime

numbers, ni — some natural numbers. Also:

µ =

(

19

5

)21
1

138
.

13. Number 2267 has many interesting properties; it is a

prime of the form (30n−13) and (13n+5), it is congru-

ent to 7 mod 20. It is father primes of order 4 and 10

etc. In the divisor of this formula there are sequential

primes 5, 7, 11. There are other possible expressions

of the similar form with such precision (10−8), for ex-

ample: µ =
45 ∗ 49 ∗ 532

8 ∗ 29 ∗ α−1
5π . It is also hard to justify

why in expressions 9 and 13 α−1 stays opposite to π

as by definition they supposed to be on the same side:

α−1 = ~c/ke2 or (2πα−1) = hc/ke2. But the author did

not succeed in finding similar expressions with α and π

on the same side with the same uncertainty. There are

some few other nice looking formulas which the use

of big prime numbers, for example: µ =
√

43 · 52679

(9 × 10−8).

14. Another possible expression was found using web

based program Wolframalpha [23]. The precision is

the same as in next formula.

15. Simon Plouffe’s approximation using Fibonacci and

Lucas numbers [8] - slightly adjusted from its origi-

nal look. Another elegant form for this expression is

following: µ32 =
1147580

φ2
.

16. This formula has the best precision alone the listed.

Though, powers of π and e seem to despoil its possi-

ble physical meaning.

5 Conclusions

At the present moment big attention is paid to experimen-

tal verification of possible proton-electron mass ratio varia-

tion. If experimental data will provide evidence for the ratio

constancy then only few expressions (14-16 from the listed)

may pretend to express proton-electron mass ratio as they

fall closely into current experimental uncertainty range (4.1×
10−10 as per CODATA 2010). Of course Simon Plouffe’s for-

mula (14) seems as a pure winner among them in terms of the

balance between it simplicity and precision. However, some

future hope for the other formulas remains if the variability of

the proton to electron mass ratio is confirmed. Important to

note that there could be unlimited numbers of numerical ap-

proximations for dimensionless constant. Some of them may

look more simple and “natural” than others. It is easy to see

that expression simplicity and explain-ability in opposite de-

termines its precision. As all formulas with uncertainty 10−8

and better become obviously more complex. And at the end:

“What is the chance that seemingly impressive formulae arise
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purely by chance?” [15].

Remembering mentioning words said by Seth Lloyd [19]

“not to follow in Dirac’s footsteps and take such numerology

too seriously” the author encourages the reader to continue

such mathematical experiments and in order to extend the ta-

ble of the formulas and submit your expressions to the author.

Special attention will be brought to simple expressions with

relations to: power of two (2n), prime numbers and proper-

ties of Archimedean solids. Besides that it may be interesting

mathematical exercise it may also reveal some hidden proper-

ties of the numbers. But how complexity of the mathematical

expression can be connected to the complexity of the num-

bers? What is the origin of the Universe complexity? How

much we can encode by one mathematical expression?

The mass ratio of proton to electron — two stable parti-

cles that define approximately 95% of the visible Universe’s

mass — can be related to the total value Computational ca-

pacity of the Universe (see [19]). So as a pure numbers they

supposedly have to be connected to prime numbers, entropy,

binary and complexity. So, possibly, their property should

be investigated further by looking through the prism of the

algorithmic information theory.

Let’s hope that presented material can be a ground for

someone in his future investigation of this area.
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Botermann et al in Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativis-
tic Speed, Physical Review Letters, 2014, 113, 120405, reported results from an Ives-
Stilwell-type time dilation experiment using Li+ ions at speed 0.338c in the ESR storage
ring at Darmstadt, and concluded that the data verifies the Special Relativity time dila-
tion effect. However numerous other experiments have shown that it is only neo-Lorentz
Relativity that accounts for all data, and all detect a 3-space speed V ≈ 470 km/s essen-
tially from the south. Here we show that the ESR data confirms both Special Relativity
and neo-Lorentz Relativity, but that a proposed different re-analysis of the ESR data
should enable a test that could distinguish between these two theories.

1 Introduction

Botermann et al [1] reported results from an Ives-Stilwell [2,
3] time dilation experiment using Li+ ions at speed v = 0.338c
in the ESR storage ring at Darmstadt, and concluded that the
data verifies the Special Relativity time dilation effect, in (1).
However numerous other experiments [4, 5] have shown that
it is only neo-Lorentz Relativity that accounts for all of the
data from various experiments, all detecting a 3-space speed
V ≈ 470 km/s approximately from the south, see Fig. 3. Here
we show that the ESR data confirms neo-Lorentz Relativity,
and that the ESR Darmstadt experimental data also gives V ≈
470 km/s.

2 Special or Lorentz Relativity?

The key assumption defining Special Relativity (SR) is that
the speed of light in vacuum is invariant, namely the same
for all observers in uniform relative motion. This assumption
was based upon the unexpectedly small fringe shifts observed
in the Michelson-Morley experiment (MM) 1887 experiment,
that was designed to detect any anisotropy in the speed of
light, and for which Newtonian physics was used to calibrate
the instrument. Using SR, a Michelson interferometer should
not reveal any fringe shifts on rotation. However using LR,
a Michelson interferometer [4] can detect such anisotropy
when operated in gas-mode, i.e. with a gas in the light paths,
as was the case with air present in the MM 1887 experiment.
The LR calibration uses the length contraction, from (4), of
the interferometer arms. This results in the device being some
2000 times less sensitive than assumed by MM who used
Newtonian physics. Reanalysis of the MM data then led to
a significant light speed anisotropy indicating the existence
of a flowing 3-space with a speed of some 500 km/s from
the south. This result was confirmed by other experiments:
Miller 1925/26 gas mode Michelson interferometer, DeWitte
1991 coaxial cable RF speeds, Cahill 2009 Satellite Earth-
flyby Doppler shift NASA data [6], Cahill 2012 dual coaxial
cable RF speed [7], Cahill 2013-2014 [8, 9] Zener diode 3-

space quantum detectors. These and other experiments are re-
viewed in [4, 10]. All these experiments also revealed signif-
icant space flow turbulence, identified as gravitational waves
in the 3-space flow [10]. However there are numerous ex-
periments which are essentially vacuum-mode Michelson in-
terferometers in the form of vacuum resonant optical cavities,
see [11], which yield null results because there is no gas in the
light paths. These flawed experimental designs are quoted as
evidence of light speed invariance. So the experimental data
refutes the key assumption of SR, and in recent years a neo-
Lorentz Relativity (LR) reformulation of the foundations of
fundamental physics has been underway, with numerous con-
firmations from experiments, astronomical and cosmological
observations [12–14].

However of relevance here are the key differences be-
tween SR and LR regarding time dilations and length con-
tractions. In SR, these are

∆t = ∆t0/
√

1 − v2/c2 (1)

∆L = ∆L0

√
1 − v2/c2 (2)

where v is the speed of a clock or rod with respect to the
observer, c is the invariant speed of light, and subscript 0 de-
notes at rest time and space intervals. In SR, these expres-
sions apply to all time and space intervals. However in LR,
the corresponding expressions are

∆t = ∆t0/
√

1 − v2
R/c

2 (3)

∆L = ∆L0

√
1 − v2

R/c
2 (4)

where vR is the speed of a clock or rod with respect to the dy-
namical 3-space, and where c is the speed of light with respect
to the dynamical 3-space. In LR, these expressions only apply
to physical clocks and rods, and so the so-called time dilation
in SR becomes a clock slowing effect in LR, caused by the
motion of clocks with respect to the dynamical 3-space. Only
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by using (4) in place of (2) does the data from the Michelson-
Morley and Miller gas-mode interferometers agree with the
results from using other experimental techniques [5].

The interpretation of (1) and (3), relevant to the exper-
iment discussed herein, is that if a time interval ∆t0 corre-
sponds to 1 cycle of an oscillatory system at rest with respect
to an observer in SR, or at rest with respect to space in LR,
then ν0 = 1/∆t0 is the frequency of the emitted photon. When
the system is moving with speed vwith respect to an observer,
or with speed vR with respect to space, then the time inter-
nal ∆t0 is increased, and the emitted photon frequency is de-
creased to ν = 1/∆t.

Here the LR effects are applied to the frequencies of pho-
tons emitted by the moving Li+ ions, to the Doppler shifts of
these photons, and to the clock slowing of the two detectors
that measure the detected photon frequencies.

Fig. 1 shows the direction of the 3-space flow as deter-
mined from NASA satellite Earth-flyby Doppler shifts [6],
revealing that the flow direction is close to being South to
North, which is relevant to the ESR Darmstadt experiment in
which the Li+ ions travel also from South to North.

Fig. 2 shows the simple circuit for the quantum detec-
tion of the 3-space velocity, The measured 3-space speeds are
shown in Fig. 3, and follow from measuring the time delay
between two such detectors, separated by 25 cm and orien-
tated such that the maximum time delay is observed for the
3-space induced quantum tunnelling current fluctuations.

3 Special Relativity and Li+ ESR
Darmstadt experiment

The Li+ ESR Darmstadt experiment measured the photon fre-
quencies νN and νS at the two detectors, emitted by the ions
moving North at speed v = 0.338c, see Fig. 4 Top. In SR,
there are two effects: time dilation of the emitting source,
giving emitted photons with frequency ν0

√
1 − v2/c2, from

(1), where ν0 is the frequency when the ions are at rest with
respect to the two detectors. The second effect is the Doppler
shift factors 1/(1 ± v/c), giving the detected frequencies

νN = ν0

√
1 − v2/c2/(1 − v/c) (5)

νS = ν0

√
1 − v2/c2/(1 + v/c). (6)

Then
νNνS /ν

2
0 = 1 (7)

and this result was the key experimental test reported in [1],
with the data giving

√
νNνS /ν

2
0 − 1 = (1.5 ± 2.3) × 10−9. (8)

On the basis of this result it was claimed that the Special Rel-
ativity time dilation expression (1) was confirmed by the ex-
periment.

Fig. 1: South celestial pole region. The dot (red) at RA=4.3h,
Dec=75◦S, and with speed 486 km/s, is the direction of motion of
the solar system through space determined from NASA spacecraft
Earth-flyby Doppler shifts [6], as revealed by the EM radiation speed
anisotropy. The thick (blue) circle centred on this direction is the ob-
served velocity direction for different months of the year, caused by
Earth orbital motion and sun 3-space inflow. The corresponding re-
sults from the 1925/26 Miller gas-mode interferometer are shown by
second dot (red) and its aberration circle (red dots). For December 8,
1992, the speed is 491km/s from direction RA=5.2h, Dec=80◦S, see
Table 2 of [6]. EP is the pole direction of the plane of the ecliptic,
and so the space flow is close to being perpendicular to the plane of
the ecliptic.

Fig. 2: Circuit of Zener Diode 3-Space Quantum Detector, show-
ing 1.5 V AA battery, two 1N4728A Zener diodes operating in re-
verse bias mode, and having a Zener voltage of 3.3 V, and resistor
R =10 KΩ. Voltage V across resistor is measured and used to de-
termine the space driven fluctuating tunnelling current through the
Zener diodes. Current fluctuations from two collocated detectors are
shown to be the same, but when spatially separated there is a time
delay effect, so the current fluctuations are caused by space speed
fluctuations [8, 9]. Using more diodes in parallel increases S/N, as
the measurement electronics has 1/ f noise induced by the fluctuat-
ing space flow.
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Fig. 3: Average speed, and speed every 5 sec, on February 28, 2014
at 12:20 hrs UTC, giving average speed = 476 ± 44 (RMS) km/s,
from approximately S → N, using two Zener Diode detectors [9].
The speeds are effective projected speeds, and so do not distinguish
between actual speed and direction effect changes. The projected
speed = V cos θ, where θ is the angle between the space velocity V
and the direction defined by the two detectors. V cannot be imme-
diately determined with only two detectors. However by varying
direction of detectors axis, and searching for maximum time delay,
the average direction (RA and Dec) may be determined. As in previ-
ous experiments there are considerable fluctuations at all time scales,
indicating a dynamical fractal structure to space.

4 Lorentz Relativity and Li+ ESR
Darmstadt experiment

In LR, expressions (5) and (6) are different, being

νLN =
ν0

√
1 − (v − V cos θ)2/c2 − (V sin θ)2/c2

(1 − v/(c + V cos θ))
√

1 − V2/c2
(9)

νLS =
ν0

√
1 − (v − V cos θ)2/c2 − (V sin θ)2/c2

(1 + v/(c − V cos θ))
√

1 − V2/c2
(10)

where ν0
√

1 − (v − V cos θ)2/c2 − (V sin θ)2/c2, from (3), is
the expression for the lower emitted photon frequency with
the ions moving at velocity

vR = (v − V cos θ,−V sin θ) (11)

with respect to the 3-space; with 1/(1 − v/(c + V cos θ)) and
1/(1 + v/(c − V cos θ)) being the Doppler shift factors as the
photons have speed c ± V cos θ with respect to the detectors
frame of reference; and 1/(1 − V2/c2) being the time dilation
effect for the clocks in the frequency measuring devices, as
the slowing of these clocks, from (3), makes the detected fre-
quency appear higher, as they have speed V with respect to
the 3-space; see Fig. 4 Bottom. From (9) and (10) we obtain

νLNνLS /ν
2
0 = 1 − v2 sin2 θ

c2(c2 − v2)
V2 + O[V4] (12)

which is identical to (7) to first order in V . We obtain

√
νLNνLS /ν

2
0 − 1 = − v2 sin2 θ

2c2(c2 − v2)
V2 (13)

Li+N νN
SνS

¾ c -c

¾ v

Li+N νLN
SνLS

¾ c + V cos θ -c − V cos θ
HHHHY V

θ

¾ v

Fig. 4: Top: Special Relativity speed diagram with Li+ ions travel-
ling at speed v towards the North, emitting photons with speed c and
frequency νN to the North, and speed c to the South with frequency
νS , with all speeds relative to the detectors N and S frame of refer-
ence. The invariant speed of light is c. The photons are emitted with
frequency ν0 with respect to the rest frame of the ions.
Bottom: Neo-Lorentz Relativity speed diagram with space flow
speed V at angle θ and Li+ ions travelling at speed v towards the
North, emitting photons with speed c + V cos θ to the North and fre-
quency νLN , and speed c − V cos θ to the South and frequency νLS .
V cos θ is the projected space flow speed towards the North, with
speeds relative to the detectors N and S frame of reference. The
speed of light is c relative to the 3-space. The photons are emitted
with frequency ν0 with respect to the rest frame of the ions.

and, for example, V = 400 km/s at an angle θ = 5◦, with
v = 0.338c, gives

√
νLNνLS /ν

2
0 − 1 = −0.9 × 10−9 (14)

which is nearly consistent with the result from [1] in (8). It is
not clear from [1] whether the result in (8) is from the small-
est values or whether it is from averaging data over several
days, as the LR prediction varies with changing θ, as would
be caused by the rotation of the earth. Here we have used
θ = 5◦ which suggest the former interpretation of the data.

A more useful result follows when we examine the ratio
νLN/νLS because we obtain a first order expression for V

V cos θ =
c (c − v)2

2v2

(
c + v

c − v −
νLN

νLS

)
(15)

which will enable a more sensitive measurement of the pro-
jected V cos θ value to be determined from the Li+ ESR Dar-
mstadt data. This result uses only the neo-Lorentz Doppler
shift factors, and these have been confirmed by analysis of the
Earth-flyby Doppler shift data [6]. V cos θ will show space
flow turbulence fluctuations and earth rotation effects, and
over months a sidereal time dependence. The values are pre-
dicted to be like those in Fig. 3 from the 3-space quantum
detectors. Indeed such a simple detection technique should
be run at the same time as the Li+ data collection. The data is
predicted to give V cos θ ≈ 470 km/s, as expected from Fig. 3.
Then the Li+ experiment will agree with results from other
experiments [4–10].
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Note that SR gives, from (5) and (6),
(

c + v

c − v −
νN

νS

)
= 0 (16)

in contrast to (15).

5 Conclusions

The non-null experimental data, from 1887 to the present,
all reveal the existence of a dynamical 3-space, with a speed
≈ 500 km/s with respect to the earth. Originally Lorentz pro-
posed an aether moving through a static geometrical space.
However the data and theory imply a different neo-Lorentz
Relativity, with there being a dynamical fractal flowing 3-
space, which possesses an approximate geometrical measure
of distances and angles, which permits the geometrical de-
scription of relative locations of systems [5]. As well the
dynamical theory for this 3-space has explained numerous
gravitational effects, with gravity being an emergent quan-
tum and EM wave refraction effect, so unifying gravity and
the quantum [4, 10, 13–16]. An important aspect of Lorentz
Relativity, which causes ongoing confusion, is that the so-
called Lorentz transformation is an aspect of Special Relativ-
ity, but not Lorentz Relativity. The major result here is that
the Li+ ESR Darmstadt experimental data confirms the valid-
ity of both Special Relativity and neo-Lorentz Relativity, but
only when the 3-space flow is nearly parallel to the NS ori-
entation of the Li+ beam. Then to distinguish between these
two relativity theories one could use (15). This report is from
the Flinders University Gravitational Wave Project.
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This paper argues that the strong and weak forces arise from the proton and electron

coupling to the Planck vacuum state. Thus they are not free space forces that act be-

tween free space particles, in contradistinction to the gravitational and electromagnetic

forces. Results connect these four natural forces to the vacuum superforce.

1 Introduction

The Dirac particles (proton and electron) have been discussed

in a number of previous papers [1] [2] [3] [4], where it is

shown that they possess similar structures. Of interest here is

the fact that they are both strongly coupled to the Planck vac-

uum (PV) state via a two-term coupling force that vanishes at

their respective Compton radii. It is at these vanishing points

where the strong and weak forces emerge. Consequently both

forces are defined by the particle/PV coupling; i.e., they are

not free space forces acting between free space particles.

What follows derives the strong and weak forces and cal-

culates their relative strengths with respect to each other and

with respect to the gravitational and electromagnetic forces.

It is shown that these four forces are connected to the super-

force associated with the PV (quasi-) continuum.

Strong Force

In its rest frame the proton core (e∗,mp) exerts the follow-

ing two-term coupling force (the Compton relations remec2 =

rpmpc2 = r∗m∗c
2 = e2

∗ are used throughout the calculations)

Fp(r) =
(e∗)(−e∗)

r2
+

mpc2

r
= −Fs















r2
p

r2
−

rp

r















(1)

on the PV continuum, where the proton Compton radius rp (=

e2
∗/mpc2) is the radius at which the force vanishes. The mass

of the proton is mp [3] and the bare charge e∗ is massless. The

radius r begins at the proton core and ends on any particular

Planck-particle charge (−e∗) at a radius r within the PV.

The strong force

Fs ≡

∣

∣

∣

∣

∣

∣

(e∗)(−e∗)

r2
p

∣

∣

∣

∣

∣

∣

=
mpc2

rp

(

=
mpm∗G

rpr∗

)

(2)

is the magnitude of the two forces in the first sum of (1) where

the sum vanishes. The (e∗) in (2) belongs to the free-space

proton and the (−e∗) to the separate Planck particles of the

PV, where the first and second ratios in (2) are the vacuum

polarization and curvature forces respectively. It follows that

the strong force is a proton/PV force. The Planck particle

mass m∗ and Compton radius r∗ are equal to the Planck Mass

and Planck Length [5, p.1234].

Weak Force

The electron core (−e∗,me) exerts the coupling force

Fe(r) =
(−e∗)(−e∗)

r2
−

mec2

r
= Fw

(

r2
e

r2
−

re

r

)

(3)

on the vacuum state and leads to the Compton radius re (=

e2
∗/mec

2), where the first (−e∗) in (3) belongs to the electron

and the second to the separate Planck particles in the negative

energy vacuum.

The weak force

Fw ≡
(−e∗)(−e∗)

r2
e

=
mec

2

re

(

=
mem∗G

rer∗

)

(4)

is the magnitude of the two forces in the first sum of (3) where

the sum vanishes. Again, the first and second ratios in (4)

are vacuum polarization and curvature forces. Thus the weak

force is an electron/PV force.

2 Relative Strengths

The well known gravitational and electromagnetic forces of

interest here are

Fg(r) = −
m2G

r2
and Fem(r) = ±

e2

r2
(5)

where r is the free-space radius from one mass (or charge) to

the other.

The relative strengths of the four forces follow immedi-

ately from equations (2), (4), and (5):

Fw

Fs

=
r2

p

r2
e

=
m2

e

m2
p

=
1

18362
≈ 3 × 10−7 (6)

|Fg(rp)|

Fs

=
m2

pG/r2
p

e2
∗/r

2
p

=
m2

p(e2
∗/m

2
∗)

e2
∗

=

=
m2

p

m2
∗

=
r2
∗

r2
p

≈ 6 × 10−39 (7)

where G = e2
∗/m

2
∗ [1] is used in the calculation, and

|Fem(rp)|

Fs

=
e2/r2

p

e2
∗/r

2
p

=
e2

e2
∗

= α ≈
1

137
(8)

where α is the fine structure constant.
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3 Superforce

The relative strengths (6)–(8) agree with previous esti-

mates and demonstrate that the free space forces

Fg(rp) = −
r2
∗

r2
p

Fs , Fg(re) = −
r2
∗

r2
e

Fw (9)

and

Fem(rp) = ±αFs , Fem(re) = ±αFw (10)

are related to the proton and electron coupling forces (1) and

(3) through the strong and weak forces.

Equations (2) and (4) give precise definitions for the

strong and weak forces, and are connected to the vacuum su-

perforce via:

Fs =













r2
∗

r2
p













e2
∗

r2
∗

and Fw =

(

r2
∗

r2
e

)

e2
∗

r2
∗

(11)

where

superforce ≡
e2
∗

r2
∗

=
m∗c

2

r∗

(

=
m2
∗G

r2
∗

)

(12)

is the PV superforce to which Davies alludes [6, p.104]. The

equality of the first and third ratios in (12) indicate that the de-

generate vacuum state is held together by gravity-like forces.

The Newtonian force

−Fg(r) =
m2G

r2
=

(mc2/r)2

c4/G
=

=
(mc2/r)2

m∗c2/r∗
=

(

mc2/r

m∗c2/r∗

)2
m∗c

2

r∗
(13)

is related to the superforce through the final expression, where

c4/G (= m∗c
2/r∗) is the curvature superforce in the Einstein

field equations [7]. The parenthetical ratio in the last expres-

sion is central to the Schwarzschild metrics [8] associated

with the general theory.

Finally,

Fem(r) = ±
e2

r2
= ±α

(

r2
∗

r2

)

e2
∗

r2
∗

(14)

is the free space Coulomb force in terms of the vacuum po-

larization superforce.
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Lorentzian Type Force on a Charge at Rest. Part II

Rudolf Zelsacher
Infineon Technologies Austria AG, Siemensstrasse 2 A-9500 Villach. E-mail: Rudolf.zelsacher2@infineon.com

Some algebra and seemingly crystal clear arguments lead from the Coulomb force and
the Lorentz transformation to the mathematical expression for the field of a moving
charge. The field of a moving charge, applied to currents, has as consequences a mag-
netic force on a charge at rest, dubbed Lorentzian type force, and an electric field E⃗,
the line integral of which, taken along a closed loop, is not equal to zero. Both con-
sequences are falsified by experiment. Therefore we think that the arguments leading
to the mathematical formulation of the field of a moving charge should be subject to a
careful revision.

1 Citations

If someone asks me what time is, I do not know; if nobody
asks me, I don’t know either. [Rudolf Zelsacher]

2 Introduction

2.1 Miscellaneous

We will follow very closely the chain of thought taken by Ed-
ward Mills Purcell in [1]. We will use the Gaussian CGS units
in order to underline the close relationship between electric
field E⃗ and magnetic field B⃗.

Table 1: Definition of symbols

symbol description

jx, J⃗ current density
I current
A, a area
c speed of light in vacuum
v, v⃗ speed, velocity
ϑ, α angles
ω anglular velocity
Ne(x), ne(x) current electron density,

electron density
R̂ etc. unit vector in the direction of R⃗
F(x, y, z, t), inertial systems in the usual
F′(x′, y′, z′, t′) sense as defined in e.g. [2]
β v

c
E⃗ electric field
B⃗ magnetic field
q,Q, e, p charge
h, a, r,R, s distance
i, k,N,m natural number variables
x, y, z cartesian coordinates
t time

2.2 The electric field E⃗ in F arising from a point charge
q at rest in F′ and moving with v⃗ in F

The electric field E⃗ in F of a charge moving uniformly in F, at
a given instant of time, is generally directed radially outward
from its instantaneous position and given by [1]

E⃗(R⃗, ϑ) =
q(1 − β2)

R2(1 − β2 sin2 ϑ)
3
2

R̂. (1)

R is the length of R⃗, the radius vector from the instanta-
neous position of the charge to the point of observation; ϑ is
the angle between v⃗∆t, the direction of motion of charge q,
and R⃗. Eq. 1, multiplied by Q, tells us the force on a charge
Q at rest in F caused by a charge q moving in F (q is at rest
in F′).

3 Lorentzian type, i.e. magnetic like, force on a charge
Q at rest

3.1 Boundary conditions that facilitate the estimation of
the field characteristics

We have recently calculated the non-zero Lorentzian type
force of a current in a wire on a stationary charge outside
the wire by using conduction electrons all having the same
speed [3]. We now expand the derivation given in [3] to sys-
tems with arbitrary conduction electron densities, i.e. to con-
duction electrons having a broader velocity range. Based on
Eq. 1, describing the field of a moving charge, we derive
geometric restrictions and velocity restrictions useful for our
purposes. These boundary conditions allow the knowledge of
important field characteristics, due to a non-uniform conduc-
tion electron density, at definite positions outside the wire.

3.1.1 The angular dependent characteristics of the field
of a moving charge

For a given β, at one instant of time, the angle ϑc (theta
change), between R⃗ and v⃗∆t, given by
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ϑc = arcsin

[
1 −

(
1 − β2

) 2
3
] 1

2

β
(2)

separates two regions: one where the absolute value of the
field of the moving charge is less than q

R2 and a second where
the absolute value of the field of the moving charge is greater
than q

R2 . For small velocities, e.g. v = 2 · 10−10 [cm/s], ϑc

is ≈ arcsin
√

2
3 or about 54.7°. For v = 2 · 1010 [cm/s], ϑc

is less than 60°. We will later need ϑc to estimate the effect
of the field of conduction electrons at the position of a test
charge Q. In Fig. 1 we have sketched in one quadrant the
regions where the absolute value of the field of the moving
charge is separated by ϑc. 2 · 1010 cm/s or 2c/3 is just an
arbitrarily chosen and of course sufficiently high speed limit
for conduction electrons to be used in our estimations.

ϑc = arcsin

(
1 −

(
1 − β2

) 2
3

) 1
2

β

for v < c

ϑc � arcsin


√

2
3
+
β2

9
+

4β4

81
· · ·


(for v = 2e10[cms−1] ϑc < 60◦)

(for v ≪ c

ϑc = arcsin

√
2
√

3
� 54.7◦

Fig. 1: The angle ϑc separates the region where the absolute value of
the field of a moving charge is greater than q

R2 from the region where
the absolute value of the field of the moving charge is less than q

R2 .

3.1.2 The conduction electron density of a stationary
current in a metal wire

We will use neutral wires and apply an electromotive force
so that currents will flow in the wires. We also have in mind
superconducting wires; at least we cool down the wires to
near 0°[K] to reduce scattering. As in [1] we will restrict our
investigation to a one dimensional current i.e. to velocities
in one direction (vx). A stationary current I, the number of
electrons passing a point in a wire per unit of time, is then
given by

I =
∫

j⃗da⃗ = A (−e) Ne (x) v̄x (x) (3)

where A is the cross section of the wire, j⃗ or component jx

is the current density, Ne(x) is the local conduction electron
density and v̄x(x) is the local mean velocity of the conduction
electrons. For a stationary current div j⃗ = 0. This indicates

that there can be no permanent pile up of charges anywhere
in the wire. From our discussion with regard to ϑc in section
3.1.1 we know that for restricted velocities vx of the conduc-
tion electrons and restricted angles ϑ the absolute value of the
field of the conduction electron e(1−β2)

r2(1−β2 sin2 ϑ)
3
2

, at the position

of the test charge Q, is either greater than e
r2 or less than e

r2 .

3.1.3 The line integral of the field of a moving charge

The field of a moving charge at an instant t0 cannot be com-
pensated by any stationary distribution of charges. The reason
is that for the field of a moving charge in general

∮
E⃗ds⃗ , 0. (4)

We will use this property to estimate whether a variable
electron density ne(x) along a wire can compensate the field
due to the moving conduction electrons. In addition we will
use this fact to show that currents in initially neutral wires
produce electric fields whose line integral along a closed loop
is non-zero.

3.2 The force of a pair of moving charges on a resting
charge

In Fig. 2 we show two charges qn and qp moving in lab and
a test charge Q at rest in lab. The indices n & p were cho-
sen to emphasize that we will later use a negative elementary
charge and a positive elementary charge, and calculate the ef-
fect of such pairs, one moving and the other stationary, on a
test charge Q at rest in lab.

Fig. 2: The force F⃗pair on a resting charge Q caused by the two
moving charges qn and qp. We assign the name F⃗pair to the result of
the calculation of a force on a resting test charge Q, by at least two
other charges having different velocities (including v⃗ = 0⃗).

The force F⃗pair exerted by this pair of charges, of qn and
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qp, on the test charge Q is, according to Eq. 1, given by

F⃗pair = F⃗Qqp + F⃗Qqn =

=

qpQ
(
1 − v⃗

2
p

c2

)
r̂Qqp

r⃗2
Qqp

(
1 − v⃗

2
p

c2 sin2 ϑp

) 3
2

+

qnQ
(
1 − v⃗

2
n

c2

)
r̂Qqn

r⃗2
Qqn

(
1 − v⃗

2
n

c2 sin2 ϑn

) 3
2

.
(5)

We are going to use such pairs of charges – specifically a
conduction electron (−e), and its partner, the nearest station-
ary proton (e) – in a current carrying wire and investigate the
non vanishing field in lab produced by such pairs outside the
wire. “Stationary” (or resting, or at rest) indicates that the
“stationary charges” retain their mean position over time.

3.3 Lorentzian type force, part 1

We consider now two narrow wires isolated along their
length, but connected at the ends, each having length 2a and
lying in lab coaxial to the x-axis of F from x = −a to x = a.
In addition the system has a source of electromotive force ap-
plied so that a current I is flowing through the wires; in one
of the wires I flows in the positive x direction and in the other
wire I flows in the negative x direction. We also have in mind
superconducting wires. On the z-axis of F fixed (stationary)
at (0, 0, h) a test charge Q is located. The system is sketched
in Fig. 3. We will now calculate the Lorentzian type force F⃗Lt

on the stationary test charge Q fixed at (0, 0, h) exerted by the
electrons of the current I and their nearest stationary protons
at an instant t0.

Fig. 3: (a) (b): We show in Fig. 3(a) the two wires carrying the cur-
rent I extended along the x axis of F from x = −a to x = a and the
charge Q at rest in F at (0, 0, h). Additionally on the right-hand side
a magnification of a small element ∆x containing the two wires and
labeled Fig. 3(b) can be seen. Fig. 3(b) shows some moving elec-
trons and for each of these the nearest neighboring proton situated
in the tiny element. We calculate the force on Q by precisely these
pairs of charges.

The two wires are electrically neutral before the current
is switched on. Therefore after the current is switched on we
have an equal number of N electrons and N protons in the
system - the same number N, as with the current switched
off. We look at the system at one instant of lab time t0, after

the current I is switched on and is constant. We consider the
k electrons that make up the current I. For each of these k
electrons ei with i = 1, 2, ..k, having velocity vx,i, we select
the nearest neighboring stationary proton pi with i = 1, 2, ..k.
“Stationary” means that the charges labeled stationary retain
their mean position over time. For each charge of the mobile
electron-stationary proton pair, we use the same r⃗i as the vec-
tor from each of the two charges to Q. We use ϑi = arcsin h

ri
as

the angle between the x-axis and r⃗i for each pair of charges.
As long as the velocity vx,i of a conduction electron is less
than 2 · 1010[cm/s] and the angle ϑi = arcsin h

ri
, between the

x-axis and the vector r⃗i from the current electron to test charge
Q, is greater than 60°(and less than 120°), the contribution of
the current electron to the absolute value of the field at (0,0,h)
is, according to our discussion in section 3.1.1, greater than
e
r2

i
. The contribution of the nearest proton that completes the

pair is e
r2

i
. If we restrict ϑi to between 60°and 120°, we will

have an electric field E⃗ , 0⃗ at the position of Q pointing
towards the wire. The Lorentzian type force F⃗Lt on the sta-
tionary test charge Q is then given by

F⃗Lt = Qe
∑

i


∣∣∣∣∣∣cosϑi

r2
i

∣∣∣∣∣∣ (−1)mi

1 −
(
1 − v

2
x,i
c2

)
(
1 − v

2
x,i
c2 sin2 ϑi

) 3
2

 x̂+

+
sinϑi

r2
i

1 −
(
1 − v

2
x,i
c2

)
(
1 − v

2
x,i
c2 sin2 ϑi

) 3
2

 ẑ

 = S LtŜ .

(6)

The mi (mi = 0 if xei − xQ < 0,mi = 1 if xei − xQ >
0) ensures the correct sign for the x-component of the force.
Eq. 6 shows that an equal Number N of positive and negative
elementary charges (the charges of the wire loop) produces a
force on a stationary charge, when a current is flowing. This
force can be written as

F⃗Lt = Fx,Lt x̂ + Fz,Lt ẑ =

=

√
F2

x,Lt + F2
z,Lt√

F2
x,Lt + F2

z,Lt

(
Fx,Lt x̂ + Fz,Lt ẑ

)
= S LtŜ

(7)

with the unit vector ⃗̂S pointing from the position of the test
charge Q(0, 0, h) to a point X(−a < X < a) on the x-axis. X
will probably not be far from zero, but we leave this open as
the resulting force vector F⃗Lt = S Lt

⃗̂S depends on the local

current electron density in the wire. Note that

(
1−
v2x,i
c2

)
(
1−
v2x,i
c2 sin2 ϑi

) 3
2

is greater than 1 as long as vx,i < 2 · 1010 [cm/s] and 60°<
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ϑi <120°, as was shown in section 3.1.1 This means the field
at (0, 0, h) points to the wire.

3.4 Lorentzian type force, part 2

Next we place the stationary charge Q at the position (b >
a, 0, h), with ϑmax = arctan h

b−a < 54◦ (see Fig. 4).

Fig. 4: If the test charge Q, is located at (b, 0, h) as shown here, with
ϑmax = arctan h

b−a <54°, then the absolute value of the field of each
of the conduction electrons at (b, 0, h) is less than that of a stationary
charge for all velocities 0 < vx < c.

The force on the stationary test charge Q is given by Eq. 6.

But now

(
1−
v2x,i
c2

)
(
1−
v2x,i
c2 sin2 ϑi

) 3
2

is less than 1 for 0 < vx,i < 3 · 1010

[cm/s] and 0◦ < ϑi < 54◦ or 136◦ < ϑi < 180◦ as was shown
in section 3.1.1. This means the field at (b, 0, h) points away
from the wire.

3.5 The line integral of the field of two parallel wires
calculated at one instant t0

We continue by estimating a specific line integral of the elec-
tric field outside the wire along the closed path shown in
Fig. 5.

Fig. 5: Shows the electric field
∑

(E⃗ei + E⃗pi ) due to the moving con-
duction electrons and their partner protons of the system of Fig. 3.
In addition the path 12341 is shown where the line integral of the
electric field

∑
(E⃗ei + E⃗pi ) is estimated. E⃗s + E⃗Q, the field of the

residual stationary charges of the system and the test charge Q, is
not shown because the line integral of the field E⃗s + E⃗Q, along a
closed path is zero.

The electric field of the system is a superposition of the
field of the moving conduction electrons and their stationary

partner protons
∑

(E⃗ei + E⃗pi ), the field E⃗s of the residual sta-
tionary electrons and protons of the wire and the field E⃗Q of
the resting test charge Q. The line Integral of E⃗s + E⃗Q along
every closed path is zero. The line integral of the electric field∑

(E⃗ei + E⃗pi ) due to the moving conduction electrons and their
partner protons is, according to our discussion in section 3.1.1
and the results given by Eq. 6 at positions like (0, 0, h) and
(b, 0, h), less than zero from 1 to 2, zero from 2 to 3 (because
here we have chosen a path perpendicular to the field), less
than zero from 3 to 4 and zero from 4 to 1 (because here we
have again chosen a path perpendicular to the field).

∮
12341

E⃗ds⃗ =
∮

12341

(∑(
E⃗ei+E⃗pi

)
+E⃗s + E⃗Q

)
ds⃗ =

=

[
C
∫ 2

1

(∑
E⃗ei+E⃗pi

)
ds⃗+C

∫ 4

3

(∑
E⃗ei+E⃗pi

)
ds⃗

]
< 0.

(8)

A wire bent like the loop 12341 might be a good device
for the experimental detection of F⃗Lt. As we have mentioned
in section 3.1.2 we do not expect pile-up effects of charges
in the wire because from experiment we know the extreme
precision to which Ohm’s Law, is obeyed in metals. But we
expect a variable electron density ne(x) (not to be confused
with the variable conduction electron density Ne(x)) on the
wires resulting from capacitive and shielding effects, together
with the field component of the moving conduction electrons
directed along the wire. The estimation of the line integral of
the electric field of the system, resulting in Eq. 8, shows, by
being non-zero, that no “stationary” static charge distribution
on the wires is able to compensate the field due to the moving
conduction electrons.

3.6 The force on a charge at rest due to a superconduct-
ing ring

We consider now a superconducting current carrying ring,
with radius a, and assume that one of its conduction elec-
trons ei at t0, at rest in its local inertial frame, has constant
velocity v⃗i = ω⃗i × r⃗i. Then, according to Eq. 5 and Fig. 6 the
Lorentzian type force on a charge Q at rest at (0, 0, h) caused
by this system is given by

F⃗Lt =
∑

i

Qe
r2

i + h2

1 − 1(
1 − β2

i

) 1
2

 cos arctan
a
h

ẑ (9a)

or if v ≪ c

F⃗Lt ≈
∑

i

Qe
r2

i + h2

1 − 1 −
β2

i

2

 cos arctan
a
h

ẑ =

=
∑

i

−Qvi
c

evi
2
(
r2

i + h2
)

c
cos arctan

a
h

ẑ.

(9b)
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Fig. 6: The electrical field, at the position of a charge Q at rest,
caused by one of the charges ei of the current in a superconducting
wire.

As stated above we assume that the current carriers are at
rest in a succession of individual local inertial frames when
circling in the loop; i.e. the movement of the charges is
well described by a polygon, with as many line segments as
you like it. This view is supported by the experimental fact
that currents flow for years in such loops without weakening,
showing that the passage from one inertial frame to the next
happens without much radiation.

3.7 The Field due to a constant electron density in the
parallel wires connected at the ends

We now proceed to the case where the current electron den-
sity Ne(x) is constant along the wires by definition to get an
analytic expression for the force F⃗Lt on a stationary charge.
This was calculated in [3] and here we just rewrite the re-
sult. The Lorentzian type force on a charge Q at rest due to
a system like that shown in Fig. 2 is, by assuming a constant
current electron density, given by

F⃗Lt = −
Qvx

c
2I cosϑmin sin2 ϑmin

hc2 ẑ. (10)

The force described by Eq. 10 is of the same order of
magnitude as magnetic forces, as can be seen by comparing
it to Eq. 11, the result of a similar derivation given in [1]

F⃗ =
qvx
c

2I
rc2 ŷ. (11)

4 Discussion

The one and only way to scientific truth is the comparison
of theoretical conclusions with the experimental results. We
have investigated the consequences of Eq. 1 - the elegant
mathematical formulation of the field of a moving charge. By
applying the field of a moving charge to currents in loops
we derive a magnetic force on a charge at rest outside these
loops. We have dubbed this force “Lorentzian type force”

and state that such a force has never been observed in exper-
iments. In addition such current-carrying systems, when in-
vestigated by using the mathematical expression for the field
of a moving charge, show an electric field whose line integral
along a closed loop is non-zero. Also this prediction has never
been observed by experimental means. We find the example
of the Lorentzian type, i.e. magnetic, force on a charge at rest
due to the superconducting ring (as given in 3.6), which also
has been never observed, to be especially instructive because
nothing disturbs the intrinsic symmetry. The overall conclu-
sion from our investigation is that the arguments leading to
the formula for the field of a moving charge should be subject
to a careful revision.
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The geometric properties of General Relativity are reconsidered as a particular nonlin-

ear interaction of fields on a flat background where the perceived geometry and coordi-

nates are “physical” entities that are interpolated by a patchwork of observable bodies

with a nonintuitive relationship to the underlying fields. This more general notion of

gauge in physics opens an important door to put all fields on a similar standing but

requires a careful reconsideration of tensors in physics and the conventional wisdom

surrounding them. The meaning of the flat background and the induced conserved

quantities are discussed and contrasted with the “observable” positive definite energy

and probability density in terms of the induced physical coordinates. In this context, the

Dirac matrices are promoted to dynamic proto-gravity fields and the keeper of “phys-

ical metric” information. Independent sister fields to the wavefunctions are utilized in

a bilinear rather than a quadratic lagrangian in these fields. This construction greatly

enlarges the gauge group so that now proving causal evolution, relative to the physical

metric, for the gauge invariant functions of the fields requires both the stress-energy

conservation and probability current conservation laws. Through a Higgs-like coupling

term the proto-gravity fields generate a well defined physical metric structure and gives

the usual distinguishing of gravity from electromagnetism at low energies relative to

the Higgs-like coupling. The flat background induces a full set of conservation laws

but results in the need to distinguish these quantities from those observed by recording

devices and observers constructed from the fields.

1 Introduction

The theories (special and general) of relativity arose out of

an extension of notions of geometry and invariance from the

19th century. Gauge freedom is an extension of such ideas

to “internal” degrees of freedom. The gauge concept follow

from the condition that quantities that are physically real and

observable are generally not the best set of variables to de-

scribe nature. The observable reality is typically a function

of the physical fields and coordinates in a fashion that makes

the particular coordinates and some class of variations in the

fields irrelevant. It is usually favored that such invariance be

“manifest” in that the form of the equations of motion are evi-

dently independent of the gauge. Implicit in this construction

is the manifold-theory assumption that points have meaning

and coordinate charts do not. We are interested in the largest

possible extension of these ideas so that points themselves

have no meaning and gauge equivalence is defined by map-

pings of one solution to another where the observers built of

the underlying fields cannot detect any difference between

solutions. This is the largest possible extension of the intu-

itive notion of relativity and gauge. It will be essential to

find a mathematical criterion that distinguishes this condition

rather than simply asserting some gauge transformation ex-

ists on the lagrangian and seeking the ones that preserve this.

This leads us to consider a more general “intrinsic” reality

than the one provided by manifold geometry but, to give a

unified description of the gravitational fields and the fields

that are seen to “live on top of” the manifold structure it

induces requires we provide an underlying fixed coordinate

structure. The physical relevance, persistence and uniqueness

of this will be discussed, but the necessity of it seems un-

avoidable.

Initially we need to reconsider some aspects of the partic-

ular fields in our study: the metric, electromagnetic and Dirac

fields. The Dirac equation is interesting as a spinor construc-

tion with no explicit metric but an algebra of gamma-matrices

that induce the Minkowskii geometry and causal structure.

There are many representations of this but the algebra is rigid.

The general way to include spinors in spacetime is to use a

nonholonomic tetrad structure and keep the algebra the same

in each such defined space. We are going to suggest an ini-

tially radical alteration of this and abandon the spinor and

group notions in these equations and derive something iso-

morphic but more flexible that does not require the vierbein

construction. It is not obvious that this is possible. There are

rigid results that would seem to indicate that curvature ne-

cessitates the use of vierbeins [1]. These are implicitly built

on the need for ψ itself to evolve causally with respect to the

physical metric (in distinction with the background metric).

We will extend the lagrangian with auxiliary fields so that this

is not necessary but only that the gauge invariant functions of

the collective reality of these fields evolve causally. This is a

subtle point and brings up questions on the necessity of the

positive definiteness of energy, probability, etc. as defined by

the underlying (but not directly observable) flat space.
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Let us begin with a brief discussion of the Dirac equation

and this modification. The Dirac equation is the fundamen-

tal description for electrons in quantum theory. It is typically

derived in terms of causality arguments and the need for an

equation of motion that is first order in time, as was Dirac’s

approach, or, more formally, in terms of representation theory

of the Lorentz group. These arguments are discussed many

places [2–4]. While this is a powerful description and has

led to the first inclination of the existence of antiparticles, it

has its own problems. Negative energy solutions have had to

be reconciled by Dirac’s original hole theory or through the

second quantization operator formalism. Most are so steeped

in this long established perspective and impressed by its suc-

cesses that it gets little discussion.

A monumental problem today is that of “unification” of

quantum theory and gravity. There are formal perturbative

approaches to this and some string theory approaches as well.

In quantum field theory we often start with a single particle

picture as a “classical field theory” and then use canonical

quantization or path integral methods. For this reason, it is

good to have a thorough understanding of the classical theory

to be built upon. We will show that, by making some rather

formal changes in traditional lagrangians, some great simpli-

fications can result. The cost is in abandoning the notions

that the fields corresponding to nature are best thought of as

evolving on the “intrinsic” geometry induced by a metric and

that spacetime is a locally Lorentzian manifold. In place of

this is a trivial topological background and a reality induced

by fields which encodes the observable reality and apparent

coordinates (induced by collections of objects) and metrical

relationships in a non-obvious fashion. Usual objections to

such a formalism in the case of a gravitational collapse are

addressed by adherence to the time-frozen or continued col-

lapse perspective.

A main purpose of this article is to illustrate an alter-

nate interpretation of the Dirac equation. In the course of it,

we will make gravity look much more like the other bosonic

fields of nature and give a true global conservation law (that

is generally elusive in GR). Our motivation begins with a re-

consideration of the spinor transformation laws and the role

of representation theory. This approach will greatly expand

the gauge invariance of the system. In place of the metric gµν
as the keeper of gravitational information, we will let the γ

matrices become dynamic fields and evolve. Our motivation

for this is that, for vector fields, the metric explicitly appears

in each term and variation of it, gives the stress-energy ten-

sor. The only object directly coupling to the free Dirac fields

is γ. Additionally, γµ bears a superficial resemblance to Aµ

and the other vector bosons. Since g ∼ γγ we might antic-

ipate that the spin of this particle is one rather than two as

is for the graviton theories which are based explicitly on gµν.

It is because we only require our generalized gauge invariant

functions to obey causality and that these conserved quanti-

ties, while exact, are not directly observable so do not have to

obey positive definiteness constraints that this approach can

be consistent.

We will be able to show that this construction can give GR

evolution of packets in a suitable limit and obeys causal con-

straints of the physical metric. It is not claimed that the evo-

lution of a delocalized packet in a gravitational field agrees

with the spinor results in a curved spacetime. This will un-

doubtably be unsatisfactory to those who believe that such a

theory is the correct one. In defense, I assert that we do not

have any data for such a highly delocalized electron in a large

nonuniform gravitational field and that the very concept of

spinor may fail in this limit. As long as causality holds, this

should be considered an alternate an viable alternative theory

of the electron in gravity. The purely holonomic nature of the

construction is pleasing and necessary for a theory built on a

flat background. A unification of gravity in some analogous

fashion to electroweak theory would benefit from having a its

field be of the same type. One might naturally worry about the

transformation properties of ψa and γ
µ

ab
in this construction.

Under coordinate transformations of the background, ψa be-

haves as a scalar not a spinor and γ
µ

ab
is a vector. One should

not try to assign to much physical meaning to this since these

transformations of the structure are passive. Active transfor-

mations where we leave the reality of all the surrounding and

weakly coupled fields the same but alter the electron of inter-

est can be manifested by changes in both ψ and γ (and A) so

that the local densities and currents describing it are boosted

and those of the other fields are not. The usual active boost

ψ′
b
= S (Λ)baψa is included as a subset of this more general

gauge change.

There has been work from the geometric algebra perspec-

tive before [5] in trying to reinterpret the Dirac and Pauli

matrices as physically meaningful objects. Since the author

has labored in isolation for many years searching for a phys-

ical meaning for the apparent geometric nature of physical

quantities this did not come to his attention until recently.

However, there are significant differences in the approach pre-

sented here and the easy unification with gravity that follows

seems to depend on abandoning group representation theory

in the formulation. Most importantly, one has a new notion of

gauge freedom as it relates to the reality expressed by particle

fields (i.e. the full gauge independent information associated

with it). Coupling destroys the ability to associate the full “re-

ality” of the electron with the wavefunction. We will see that

this can get much more entangled when one includes gravity

and, with the exception of phase information, the only con-

sistent notion of a particle’s reality comes from the locally

conserved currents that can be associated with it. Here will

involve multiple field functions not just ψa as in the free par-

ticle case.

The dominant approaches to fundamental physics has

been strongly inspired by the mathematical theory of mani-

folds where a set of points is given a topology and local co-

ordinate chart and metric structure. The points have a reality
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in this construction and the charts are grouped into atlases so

that coordinates are “pure guage” and no physical reality is

associated with them. We frequently say that the invariance

of the field’s equations requires that we have a metric invari-

ant action be a scalar. It can be shown somewhat easily [6]

that this is not true and that most lagrangians that give many

common (local) field equations are neither invariant nor lo-

cal. In the following we enlarge the class of physically equiv-

alent fields to the set of fields that evolve in such a fashion

where the “observers” built from the fields cannot distinguish

one description from another. This includes simple spacetime

translations of a flat space of the entirety of fields and far more

general deformations of the fields which do not preserve the

underlying set of points.

The underlying space is chosen trivially flat with the ηµν

metric. This begs the question of how general curved co-

ordinates resulting from the effective curvature induced by

the field gµν(γ) relate to it and how the causally connected

structure induced by the fields evolves through this flat back-

ground. In this picture the “physical coordinates” seen by

observers are measures induced by “candles,” specifically

highly independent localized objects and radiators, that in-

duce his perception of his surroundings. Clocks are induced

by atomic oscillations and other local physical processes.

Collective displacements and alterations of the fields on the

underlying flat space that preserve the preserved reality are

considered alternate representations of the same physical re-

ality rather than an active transformation of it to a new and

distinct one, as one would expect from the usual manifold

founded perspective.

At the foundations of manifold inspired physics are ten-

sors and their transformation rules under coordinate changes.

In this case we have little interest in the transformations with

respect to the underlying flat space and all fields are treated

as trivial tensors with respect to it. The interesting case of ap-

parent curvature must then be measured with respect to these

local candles. The vector properties of functions of a field,

like the current j
µ
(0)
= ψ̄(0)γ

µψ(0), are then the collective result

of active transformations of the ψ(i), γ and underlying coor-

dinates that leave the nearby candles’ (labelled by i) gauge

invariant features unchanged and a transformation of the field

ψ(0) so that the resulting current j(0) appears to move through

a full set of Lorentz boosts and rotations relative to measure-

ments using these candles.

This is a significant departure from the usual geometry in-

spired approach. Not surprisingly many formulas will appear

(deceptively) similar to usual results despite having very dif-

ferent meaning since they will all be written with respect to

the underlying flat structure not some “physical coordinates”

with respect to some fixed point set induced by the candles.

The mystery of how we arrive at a geometric seeming reality

and at what energy scale we can expect this to fail is a main

motivation for this article. Conservation laws follow from

the usual ten Killing vectors of flat space but the meaning of

these conservation laws (and their form in terms of observable

quantities) is unclear. Even the positive definiteness of quan-

tities like energy and mass density are not assured and failure

of them do not carry the same consequences as in usual met-

ric theories. The symmetry responsible for mass conservation

is the same one as for probability so such a situation raises

more questions that must be addressed along the way. We

have been nonspecific about the details of what determines

equivalent physical configurations. Aside from the geometry

induced by candles the gauge invariant quantities that we pre-

sume are distinguishable by observers are those induced by

conserved currents such as mass and stress-energy. It is not

obvious why such should be the case. A working hypothesis

is that all observers are made up of long lasting quasilocal-

ized packets of fields that determine discrete state machines

and these are distinguished by localized collections of mass,

charge and other conserved quantities.

In this article we only discuss these as classical theories in

a 4D spacetime. Of course, the motivation is for this to lead

to a general quantum theory. There is a lot of work on reinter-

pretation of quantum theory as a deterministic one. Everyone

who works on this has his favorite approach. The author here

is no exception and has in mind a resolution that is consistent

with the theory in [7] that gives QM statistics assuming that

particular far-from-eigenstate wavefunctions describe classi-

cal matter that arise in an expanding universe with condensing

solids. The motivations behind the following constructions is

not just to get some insight on unification but to take steps

to resolve some of the fundamental contradictions of quan-

tum field theory, such as Haag’s theorem, and to give a solid

justification for the calculations of field theory that have been

successful.

The structure of the article will be as follows. Invariance

and the nature of causality are discussed and contrasted with

the usual flat background approach in §2. This is especially

subtle since the “physical” metric, reality and coordinate fea-

tures are encoded in this construction in nonobvious ways,

the gauge group is large and some conserved quantities and

expected positive definiteness of quantities can change with-

out altering the physically observable results. Next we will

elaborate in §3 on the transformation properties of the fields

and promotion of the gamma matrices to holonomically de-

scribed proto-gravity fields in causally consistent manner and

in §4 give a discussion on the “reality” induced by fields. In

§5 we modify the Dirac lagrangian with an auxiliary field φ

to replace the awkward ψ̄ = ψ∗γ0 with its extra γ0 factor un-

contracted in any tensorial fashion, and demonstrate causality

of the gauge invariant functions of the field.∗ In §6, a sister

∗We typically vary ψ and ψ∗ independently in the lagrangian to get equa-

tions of motion but then constrain them to be so related (though we should

show this constraint is propagated as well). Here we make no such restriction

and allow ψ and φ to be independent fields with no constraints on the initial

data. In the flat space case, the case of φ = γ0ψ∗ gives the usual results and

shows many other cases (i.e. ψ, φ initial data pairs) are gauge related to this.
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field to γ is introduced that allows a similar lagrangian for the

proto-gravity fields (when a Higgs-like construction is used)

as for the electromagnetic field and that gives General Rela-

tivity in a suitable limit. This similarity suggests a pairing of

the electromagnetic and proto-gravity fields in a manner rem-

iniscent of the electroweak theory. §7 gives a discussion of

the global conservation laws that arise due to symmetries of

the flat background.

2 Roles of invariants in physics

The mathematical theory of invariants arose in the 19th cen-

tury and the intuition derived from them made a physical ap-

pearance with the work of Mach [8] and Einstein [9]. Since

then they have played a preeminent role both in formulat-

ing theory and solving particular problems. The geometrody-

namic approach to General Relativity is to assume some un-

derlying geometry that is locally special relativity and posit

that this geometric structure and its associated transforma-

tion laws are the natural way to look at the world. “Flat

background” approaches are generally to look at small post-

Newtonian corrections to the universe for nearly flat spaces

where gravity is playing a small role [10]. In more dramatic

configurations this formalism seems hopelessly flawed.

Wormholes are topologically forbidden from such a descrip-

tion. Black holes with their singularities have infinite metric

curvature at the center and the interior of the event horizon

causally decouples in one direction from the exterior.

There is an old and out-of-favor view of black holes that

goes back to Oppenheimer [11] whereby the infalling mat-

ter gets redshifted to an effective asymptotic standstill so that

no singularity or horizon ever forms. This is often called the

“time-frozen” picture. For many this is considered equivalent

to lagrangian evolution where the particles fall in finite proper

time to the center. It is usually neglected that this implies a

transfinite amount of external observer time must elapse for

this to occur. This implies that we have assumed that in the

entirety of external observer time, no collective action occurs

to interfere with black hold formation before the event hori-

zon forms. Furthermore, an infalling pair of charges on oppo-

site nodes will be seen as a dipole field for all future time in

the time-frozen case. The lagrangian approach would suggest

that these fall to the center and form a spherically symmetric

charge distribution as suggested by the “no-hair” conjecture.

This latter picture has no physical relevance for the external

observers, so the author is firmly in the time-frozen camp.

The importance of this point of view is that there are no

exotic topologies to get in the way of assuming that one has

a flat background. The “geometric” aspects of gravity are

some yet to be explained feature of a field that evolves in an

equivalent fashion to all the other fields of nature. Let us

now take the point of view that there is a flat background and,

In the case of a nontrivial gravity field, we allow the possibility that no such

mapping may exist.

rather that looking at perturbations of it as gµν = ηµν + h̃µν,

the field hab sits on top of it and is coupled to the other fields,

including the kinetic terms, in the fashion of a metric. Let this

background have the flat space metric ηµν so that coupling, for

the electromagnetic case, is of the form

L =
(

∂αAβ − C
γ
αβAγ

)

hαα
′
hββ

′ (

∂α′Aβ′ −C
γ′

α′β′Aγ′

)

,

where the connection-like C tensor is yet to be defined. Im-

portantly, these are not considered to be indices that trans-

form as co and contravariant tensors under the metric h. All

the objects here are flat space η-tensor objects. This seem-

ingly bazaar construction gives causal cones for the evolution

that are not the flat space cones defined by ηµν. The coordi-

nate labels t̂, x̂, ŷ, ẑ give coordinate directions. We expect that

the (x, y, z) set are h-spacelike in the sense that hi juiu j > 1

for all u in the span of x̂, ŷ, ẑ. The forward timelike direc-

tion has a positive projection on t̂ even if the cone is so tilted

that htt > 0. Thus it gives a positive evolution direction for a

future on the background.

In general, any reasonable equation of motion for h should

preserve this set of conditions and evolve in our coordinate

time variable t for all values. In the case of black hole for-

mation the metric tends to asymptotically converge on a de-

generate state leading to a set of equations that are very ill-

conditioned. How to treat this situation numerically is still

unclear but the presence of a flat η-background means that

we have a full set of conservation laws so these may provide

an avenue to evolve without such problems [12]. We will not

be answering the question of general persistence of evolution

of the equations as it seems to be a very hard problem (as

most nonlinear PDE solution existence problems are) but it is

very important. Failure of this to hold would be destructive

to such a theory. It is taken as an article of faith that such a

set of initial data can be evolved for all coordinate time with

time steps taken uniformly at all locations. In other words,

cones may narrow and tilt but they will never intersect with

our spatial coordinate slices.

The role of gauge invariance in physics is analogous to an

equivalence class in mathematics. In mathematics we have

some set of structures we wish to preserve and there can be

classes of elements that act the same under them. In physics,

we may have a set of fields that evolve under the equations of

motion in such a way that there are classes that retain some

set of properties under evolution. We usually describe the set

by a gauge transformation that joins each subclass. It is not

clear that nature is really blind to which element of the class

we are choosing. One could choose a representative element

and claim that this is the “correct” one and be no worse for it.

In the case of the Dirac field ψ and the electromagnetic field

A each has a set of gauge transformations as free fields. The

Dirac field has only a global phase transformation however,

when coupled to the electromagnetic field, it acquires some

local gauge freedom A → A + ∇χ in that the phase ϕ →
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ϕ − χ. This is what we mean by “promoting” a global to a

local symmetry.

In the following we will replace the quadratic lagrangian

with a bilinear one by replacing ψ̄ = ψ∗γ0 with a new field φ.∗

This is the motivation for the title. We are really only aban-

doning γ0 in this sense as a factor in defining ψ̄. The fields γµ

are all retained as what might be loosely called a “spin 1” en-

coding of the gravitational field. We now need to ask what are

the physically distinguishable states of the system. It is natu-

ral to argue that the conserved quantities give the only unam-

biguous physical quantities that we can distinguish. Phase is

complicated in that it gives current and relative cancellation

due to interference. One can define a ψ by the mass density

ρ and the current j. When the density is over a compact set

this is enough to fix the phase up to a constant. For our new

set we will have conservation laws that depend on ψ, φ and

γ. The γ0 is still present but now a dynamical field. This trio

of fields now collectively determines the conserved currents.

Naturally this is a massive expansion of the gauge group. In

the “flat space” case we can choose γµ to be the Dirac matri-

ces in some representation and φ = γ0ψ∗ and obtain the usual

Dirac results.

The Noether charge symmetries here correspond to space-

time symmetries and phase transformations. When we con-

sider the quantum analogs of such fields the importance of

positive definite norm is important. This is because it is given

the role of a probability for a measurement so must be posi-

tive definite and normalizable. This fails in the classical the-

ory of Dirac particles but is “fixed up” in the quantum field

theory by choices for the commutation relations of the op-

erators and their action on the vacuum ground state (as with

the Gupta-Bluer formalism [13]). In this classical theory we

are not necessarily concerned with this for this reason but the

same symmetry generates mass and charge conservation so it

still is important. Interestingly, this symmetry holds in curved

space as we propagate hyperbolic spacelike slices even when

there is no spacetime symmetry.

One way the Dirac field is incorporated into curved space-

time is to fix γµ set to be a particular representation and use

vierbein fields (tetrad formalism). This preserves the desired

norm properties above and ensures local packets move cor-

rectly. There is little choice in this approach if one is to use

wavefunction evolution from a quadratic lagrangian [1]. To

be fair, no one knows what the evolution of an electron is

on such scales. We expect packets to move along geodesics

but if some negative norm or mass density entered we then

must defer to experiment to validate or reject this. The prob-

abilistic interpretation seems hopeless but consider that true

“observers” as machines that measure the results are them-

selves built from such fields. If quantum evolution is a deter-

ministic feature as decoherence advocates suggest, then the

∗Such a construction also introduces a large set set of nonlocal conser-

vations laws. [6]

probability is unity by the evolution and a change in posi-

tive definite norm means that the action of our measurement

devices must obey a modified rule that preserves this. This

should be kept in mind when we consider questions about the

conserved quantities. Negative energy and mass regions of

quantum bodies in highly curved regions my not be forbid-

den by nature as much as we forbid it by our assumptions

about the essential meaning of such quantities.

For evolution on such a flat η-background that mimics

gravity, we must then ask what kinds of transformations cor-

respond to the general coordinate transformations we are used

to in GR. Firstly, just as information has come to be consid-

ered a physical state in quantum information theory, coordi-

nates and time should be thought of as physical conditions

given by the kinds of candles afforded by local atoms and

clusters that triangulate our spacetime. We may as well think

of “physical coordinates” (i.e. non η-background coordinate

changes) as made of material bodies that are small enough

to give insignificant perturbations to the general dynamics.

To actively boost to another RF (reference frame) we con-

sider a local current relative to some other standard currents

that define the frame and choose the new current so the rela-

tive local motion matches. To passively boost to another RF

we consider a transformation of the underlying η-background

coordinates. Since the physically causal light cones induced

by hµν in its coupling to the other fields A, ψ, etc. are not

the cones induced by η we must take care to maintain the

t̂-forward direction of the cones under such changes. The

tensor field constructions made with the usual forms ψ̄γ
µ
D
ψ,

etc. will now be of the form jµ = φγµψ so that their trans-

formation properties under η-background coordinate changes

are tensorial. This is, however, not very interesting because

it does not relate to our physical observers and their physi-

cal coordinates that relate to the function hµν. Many active

transformation of the field trio φ, γ, ψ give the same boosted

current. If we make the change purely with γ and assume our

metric function hµν is built from them, this will change other

terms in the equations of motion.

There remains the many possibilities of transforming the

pair ψ, φ to give a new current function without altering the

local observed geometry. Passive transformations based on

allowable background coordinate changes can be done by

changing the η-background coordinates or altering the fields

ψ, φ in a manner that gives a shifted (on the background co-

ordinates) set of currents and conserved densities that evolve

in an isomorphic fashion to the original fields. The possi-

bility of having shifted and deformed sets of fields on the

background space with the same observable reality is a novel

extension over the manifold approach where the points have

reality and we assign and transform fields there based on co-

ordinate changes and other gauges. It is analogous to having a

set of fields onR4 and shifting the set by a 4-vector vµ to give a

new equivalent universe of solutions in the equivalence class;

an obviously true equivalence that is not present by positing a
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manifold with fields. We now allow this full set of equivalent

representations of such a universe.

3 Transformation rules

The theory of spinors arose naturally out of Dirac’s alge-

braic attempts to reconcile causality with the first order equa-

tions that seem to describe nonrelativistic electrons. Inter-

estingly, Schrödinger originally attempted the, later named,

Klein-Gordon equation to describe electrons but could not

get the fine structure right [4]. He settled on a diffusion-

like equation that was first order in time and second order

in spatial derivatives. Pauli adapted it to include spin but, as

for most such equations, signal propagation speeds diverge.

Dirac introduced a pair of spinors and a linear first order op-

erator that when “squared” gave the Klein-Gordon equation

for each component, thus ensuring causality.

His treatment introduces a set of γ
µ

ab
matrices that are con-

sidered fixed and constitute representations of the SL(2,C)

group which is a two-fold covering group of the SO+(3, 1)

group. More explicity, this gives a map of complex valued

bi-spinors
(

a

b

)(

c

d

)

to real 4-vectors so that each 4×4 complex

matrix action corresponds to a Lorentz transformation and

compositions among these is preserved by this mapping. In

the humblest of terms, we can decompose a general free state

ψa into a basis of free progressive wave solutions eikµxµua(k)

where we can define a general Lorentz transformation Λ
µ′

ν

through the coordinate and algebraic action S (Λ)abψb(Λx).

We define this action so that the current jµ is transformed by

a boost and interpret it as the actively boosted free plane wave

of positive energy. Note that S (Λ)abψb(x) , ψa(Λx).

The Dirac lagrangian has a (seemingly) symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ, (1)

where ψ̄ = ψ∗γ0. This inconvenientγ0 is generally considered

necessary to give Lorentz invariance. We can see that without

it we would get inconsistent equations of motion for ψ and ψ∗

if we vary them independently.

The operator S (Λ)ab performs a transformation of ψa so

that the lagrangian is invariant and the resulting current is

boosted as

j′α(x′) =
(

ψ′(x′)∗γαψ′(x′)
)

=
(

(Sψ(x))∗γαSψ(x)
)

=
(

ψ(x)∗S ∗γαSψ(x)
)

=
(

ψ(x)∗γ
′αψ(x)

)

= Λαβ

(

ψ∗(x)γβψ(x)
)

= Λαβ jβ(x).

(2)

The Dirac theory allows us to think of the complex 4-spinors

ψa at each point as indicating the local direction of the lo-

cal current of the particle corresponding to it. To achieve

this it has been necessary to introduce negative energy so-

lutions. The negative energy solutions are reinterpreted as

positrons and given a positive mass through the details of

canonical quantization since they are generally deemed unde-

sirable. One reason to reconsider this point is that net positive

energy initial data may maintain this property and negative

energy states do not necessarily provide an avenue for some

subset of the space to fall to negative infinite energy at the

expense of heating the rest of the system. Such a result would

depend on the details of the coupling and dynamics. Local net

negative energy density in solutions arising from positive lo-

cal energy physically arising states would produce problems

but it is not clear that this ever arises except in extreme cases

where pair production becomes available.

Other conservation laws such as the conservation of prob-

ability (which arise from the same global phase symmetry

that give mass and charge conservation) have similar prob-

lems. In an “emergent” theory of quantum measurement we

do not need a probability operator (or any operators at all).

The probabilities arise from measurements with the kinds of

macroscopic yet still quantum mechanical matter that con-

stitutes the classical world [7]. In this approach, the initial

data and evolution equations generate their dynamics in a de-

terministic fashion and the probabilistic features arise from

the long lived partitioning of the classical world into subsets

indexed by the delocalized objects that interact with it. De-

tails of when this is a consistent procedure are discussed in

ref. [7]. For this reason, we do not seek to validate or build

upon arguments that start with an “interpretation” of particu-

lar expressions since we ultimately expect the evolution and

interactions to independently determine the expressions that

give all observable results.

One of the frustrating aspects of the Dirac equation as it

stands is that it is not clear how we should alter its form in

general coordinates. One can use the local frame approach

and assume the Dirac matrices are members of the same rep-

resentation in each one. A spinorial connection then indicates

how nearby spinors are related as a consequence of geometry.

If we allow the matrices to become functions of space and

time with only the spacetime indices changing this gives a

simple approach but then it is not clear how we recover local

Klein-Gordon (KG) evolution of each component and what

the locally boosted fields should be. If we continue with the

spinor approach and let the γµ(x) matrices be fixed and alter

the spinor fields instead then we need a transformation that is

a kind of “square root” of the Lorentz vector transformation.

This is how we get the actively boosted solutions in flat space.

In curved spacetime, there is no global notion of a boost so

the former perspective seems more valuable. Ultimately, we

specify a configuration by the spacetime metric and the fields

on it but the metric will be a function of the γµ matrix fields

(and some associated dual fields) that only give geodesic mo-

tion below some energy bound.

In the early days of the Dirac equation, interpretations

have evolved from a proposed theory of electrons and protons

to that of electrons and positrons with positrons as “holes”

in an infinitely full electron “sea” to that of electrons with
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positrons as electrons moving “backwards in time.” The first

interpretation failed because the masses of the positive and

negative energy parts are forced to be equal. The second was

introduced out of fear that the negative energy solutions of

the Dirac equations would allow a particle to fall to endlessly

lower energies. The last was introduced as a computational

tool. The negative mass solutions were to be reinterpreted

as positive mass with negative charge. Necessary computa-

tional fixes associated with this idea are subtly introduced

through the anticommutation relations used in the field the-

ory approach to fermions and the properties of the supposed

ground state [13]. If we are going to seek a classical field

theory approach to this problem we need another mechanism.

For the moment, we assume the γmatrices are those of the

Dirac representation. Standard treatments allow any selection

of 4×4 matrices that represent the SO+(3,1) group. Here we

choose a specific representation because we are going to let

the γ’s be fields and let these other choices be a kind of gauge

freedom until some interaction restricts us to a specific subset.

The Dirac lagrangian has a (seemingly) symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ (3)

where ψ̄ = ψ∗γ0. This is generally considered necessary to

give Lorentz invariance. The Dirac matrices satisfy the con-

dition

{γµ, γν} = −2ηµν, (4)

where η =Diag(−,+,+,+). This suggests that we could view

the metrical properties of the space as encoded in γ rather than

invoking a metric η. The metric has ten independent parame-

ters at each point and γ has 4 × 10 or 43 parameters, depend-

ing on chosen symmetry constraints but we need to satisfy 44

equations. If we trace the suppressed spin indices then there

are only 10 equations and a general metric can be encoded

in the γµ set. However, eqn. 4 is the identity we require to

convert the Dirac equation into a KG one that demonstrates

causality in each component. This is a loose end in deriving

geodesic motion for a packet to show that we get observed

motion in the classical GR limit and an important considera-

tion in what follows.

In anticipation of a future unification theory one cannot

help but notice the greater similarity of γ
µ

ab
(x) to Aµ(x) and

the other vector boson fields than any of these to the metric

gµν. For now we simply leave this as constant but accept that

it can have its own transformation properties as a one-vector.

In contrast, all the “spinor” labels are considered as having

only scalar transformation properties. The bispinors ψa now

transform as scalars. To emphasize their new properties and

that they still have a collective reality as a four-tuple of func-

tions we term it a “spinplet.” The mixed objects γ
µ

ab
we con-

sider a vector object with extra labels and, by analogy, label

it a “vectorplet.”

There are some surprising implications of this. The equa-

tions are unchanged but the transformation properties are now

different. Since the γ
µ
ab

’s can vary with position, we expect a

much larger equivalence class of electron-gravity field pairs,

{ψ, γ}, that correspond to the same underlying reality. We

can boost the system by Λ
µ
αγ

α. This gives the same ψa fields

at every point but the physically measurable jν currents are

altered. Of course we still have the traditionally boosted so-

lutions S (Λ)ψ(0)(Λx) that have this same current so we have a

degeneracy in the pairs (Λγ, ψ(0)) and eiφ(γ, S (Λ)ψ(0)) and all

other states with the same current and net phase. This is not

the result of a discrepancy in the active vs. passive coordinate

transformations we observe in a fixed representation but an

additional degeneracy in the equivalent physical descriptions.

We have only used the current jµ to distinguish states and we

expect that there will be some other conserved quantities, like

stress-energy, that will physically subdivide this set into dis-

tinct equivalence classes. Since there are so many degrees of

freedom in the set of γ
µ
ab

(x)’s we anticipate that the set is still

significantly enlarged.

4 Reality and gauge

The AB effect gives a simple example of how the “reality” of

an electron is not sufficiently described by the wavefunction

of the electron itself. In this case, the current is a function of

both ψ and A as J = i~∇ψ + eA. This construction is use-

ful in sorting out various apparent contradictions in electro-

magnetism. If we want to investigate the radiation reaction

or questions of “hidden momentum” [14, 15] one can build

a packet that spreads slowly compared to the effects of ex-

ternal fields and see how the self field and lags contribute to

the actual motion. The power of it is that there is no am-

biguity in the gauge as for a hodge-podge lagrangian like
1
2
mv2+ jA− 1

4
FF [16] because the physical current of a packet

is the gauge invariant J not the naive j = mv. The AB effect

seems like a topological effect because it is viewed through

the lens of ψ being the pure descriptor of the reality of the

electron and as a stationary effect. In driving a solenoidal

current to create a circulating A field we accelerate J with a

transient circulating E field. Part of the current is made up

of the phase gradient of ψ and part from A itself. The field

and the acceleration moves outwards from the current source

at the speed of light and the resulting equilibrated current be-

comes a function of the final magnetic flux. This circulating

current must gain all of its curl from A. The ψ can only con-

tribute to an irrotational flow so general charge packet motion

requires a contribution from A. This suggests we might gen-

erally want a more nuanced distinction of particle reality than

merely a function of each individual field in a lagrangian that

has been nominally assigned to the particle type alone.

In flat space without gravity or interactions, we can con-

sider packets of fields that are widely separated based on type.

These can then evolve separately and the type of field and the

reality implied by it are synonymous. There can still be some

gauge freedom but the packets and any interesting properties
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that one might observe are contained in the same support. The

observables are, at best, the gauge invariant properties such

as stress-energy or current. Allowing interactions, this reality

gets complicated in two ways. Firstly, the conserved currents

may now involve aspects of more than one kind of field and

second, there are now constraints that must be obeyed. These

are generally defined by elliptic PDEs such as ∇ · E = ρ that

are propagated by the dynamic equations.∗

If we now include gravity in the form of a γµ field that has

some gauge freedom that mixes with the reality of the wave-

fuction ψ then we cannot make the above separation. The

gravitational field is everywhere so no isolation of packets

is possible. The reality of the electron is now a function of

ψ and any γ-like fields that have global extent. This is in

contrast with the case where the gravitational information is

completely specified in the gµν field. Since this has no gauge

freedom beyond that of coordinate changes, the packet mo-

tion of a wavefunction is affected by it yet the reality of the

electron is still entirely determined by the values of ψ in the

packet itself.

For the case where multiple fields determine a single re-

ality, when is it really viable to call one set of quantities the

“electron current” versus some combination of quantities that

strictly depend on multiple types of fields? In the case of

the Dirac and electromagnetic field (in flat space with con-

stant γ matrices), the density of the field is only a function

of ψ so that we have at least one component of the 4-current

that is entirely specified by the wavefunction. This allows us

a uniquely associate j0 with the electron field ψ and so call

it the “electron-density.” The stress-energy terms similarly

have T 00 as a simple function of ψ alone. If every conserved

quantity can be associated this way, we have a well-defined

mapping between the fields and conserved quantities. If we

are interested in more exotic lagrangians than can be formed

by the “minimal” prescriptions from the free quadratic cases,

we will need to be mindful of the possibility that the currents

may not necessarily be so associated with one particular field.

Although this discussion may feel somewhat pedantic, it

is important to make this distinction and not get trapped in

the vague lore that sometimes accompanies discussions in

physics. For example, it is often said that we must have “man-

ifestly invariant” lagrangians to get relativistically consistent

results. This is not true not only in the obvious sense that

∗This is purely a classical theory of delocalized fields so we do not have

the problem of “self-energy” or the “particle not feeling its own fields.” In

the many body case, the fields presumably are made of many constituent ones

with only the “center of mass” motion as visible to us. This allows us to have

a wavefunction of a charged particle that does not spread under the influence

of the field generated by it, as in the classical particle case [15]. However,

the self force and momentum are subtle concepts in that such a composite

charge must have both mbare and mem components. Only mbare is localized

and mem is spread over the range the static fields. The contribution to the

electromagnetic momentum in Ma = (mbare + mem)a = Fext in the force law

is actually provided by a self field of the radiation field traversing the support

of the charge.

they can be rearranged in a nonobvious invariant form. One

can conceivably write down a set of fields that gives a class

of solutions whereby the degrees of freedom and invariance

is with respect to the observers built of other physical fields.

Here we can imagine inducing a set of “physical coordinates”

based on local packets of long lasting separated objects that

define a grid. With the right time evolution parameterization,

we would expect the form of the equations to be invariant with

respect to such a coordinate set. The overall class of equiva-

lent solutions should allow for local field changes that induce

independent observable current changes with the appropriate

degrees of freedom for the observed dynamic freedom of the

system. In general, we only need observers to see the world

with such symmetry (such as Lorentz) but it need not hold

with respect to the coordinates. As long as the constituent

fields of the observers and the external reality “covary” to-

gether, then the observers see exactly the same thing. Allow-

ing such dynamics can enlarge the equivalence classes at the

cost of a more complicated relationship between coordinates

and observable reality.

Generally we seek a quadratic free field lagrangian and

then gauge and Lorentz invariant couplings between them.

The Dirac lagrangian is usually presented in the superficially

symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ. (5)

The appearance of the γ0 is displeasing if we are to interpret

the µ indices as spacetime indices. This particular form is of-

ten considered important because it gives a positive definite

probability density. In an “emergent” approach to quantum

theory where the probabilities are defined by the evolution

equations in a deterministic fashion, this is not important.

Probability will automatically be conserved by the normal-

ization over the resulting paths that bifurcate the histories of

recording devices and observers as indexed by the delocal-

ized particle’s coordinates [7] regardless of whether there is a

“nice” operator that describes it. More importantly, we need

the eom of ψ and ψ∗ to be consistent. This dictates that the

γ0 appear in this expression. By using a representation where

γ0γµγ0 = γµ the variations of the action give equivalent equa-

tions of motion.

To achieve a lagrangian that is manifestly invariant us-

ing this “vector-plet” interpretation we introduce an auxiliary

field φ that, in flat space, can be chosen to be ψ∗γ0. For

the usual Dirac equation this condition is propagated. One

should wonder if this will give a true isomorphism with phys-

ical results. We are interested in the propagation of conserved

quantities as mass, charge. . . and some local phase informa-

tion. This brings us to a subtle point. Even in nonrelativistic

quantum mechanics, the “reality” of interacting particles is

not completely given by the corresponding fields themselves.

This is most clearly observed in the AB effect. Often this

is viewed as an important example of topology and gauge in
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physics. It is more simply understood as an expression of

the electron current being not simply a function of the elec-

tron wavefunction alone. A similar property is observed in

the London skin depth in superconductors. The only way an

electron current can obtain rotational flow is through the vec-

tor field ~A or through the appearance of discrete vortices. The

moral here is that angular momentum, among other conserved

quantities, is defined by a collective set of fields so it makes

no sense to associate with one particular particle. “Spin” is

now a kind of angular momentum that exists through the col-

lective local reality of this new vector-plet graviton and two

fermion spinplet fields. By abandoning this usual concept of

a spinor we will obtain an isomorphic theory that has signifi-

cant generalizations.

5 Bilinear modification

To resolve the complications arising from the hidden γ0 in the

usual Dirac lagrangian, let us replace ψ̄with an associated yet

independent field φ and see when it evolves in a consistent

fashion when we simplify to the Dirac representation. Con-

sider the Dirac-limiting lagrangian density we can choose us-

ing only the complex valued ψ, φ and γα (with gµν an implicit

function of it) is of the form

L = i
(

φaγ
µ

ab
∂µψb − ∂µφaγ

µ

ab
ψb

)

− 2mφaψa. (6)

For constant γ’s chosen to be the Dirac representation, then

variation δφ yields iγµ∂µψ − mψ = 0. Variation by δψ yields

−i(∂φ)γµ − mφ = 0. If we choose φa = γ0
ab
ψ∗

b
then this is

equivalent to the Dirac equation solution for φ.

When we consider the gauge equivalent states this intro-

duces some additional considerations. For example, if the

support of ψ and φ are disjoint then there is no net mass or

current density. Such a state is evidently a vacuum despite

the nontrivial values of the functions and evolution equations.

Here we see that our notions of the physical meaning we at-

tach to functions as describing the reality of a particle is less

trivial than usual.

So far we have not explicitly included any measure or

metric and the action of∇µγν is ambiguous without it. We can

make formal definitions of these by using eqn. 4 as a guide.

The pair of functions,

gµν = − 1

4
Tracγ

(µ
ab
γ
ν)
bc

gµν = Inv

(

− 1

4
Tracγ

(µ

ab
γ
ν)
bc

)































(7)

to define the metric in terms of γ are evidently complicated

when explicitly constructed but they do give us trial defini-

tions for gµν(γ) and its inverse in terms of γµ that can specify a

completely general metric field. Another possible objections

is that the form of γµ with indices raised as a contravariant

object is opposite that of the covariant form that Aµ enters the

lagrangian especially the interaction terms qψ̄γµAµψ which

gives us pause when considering the possibility of treating γµ

and Aµ as analogous fields where no a priori metric exists.

Since we are interested in a theory that includes electrons,

positrons, photons and gravity with the electromagnetic and

gravitational fields on an equivalent footing we will will need

to make a further modification. It will be convenient to let the

natural form of γ be a lowered index object γµ and introduce

a contravariant sister field λν that generates gµν in the same

fashion that γµ generates gµν. It is not automatic that these be

inverse functions despite the suggestive notation but we will

show that they do so in sufficiently low energy cases for a

particular lagrangian. We expect the following relations to be

able hold in the flat space limit

gµνδac = −
1

2
{λµ, λν} = −λ(µ, λν)

gµνδac = −
1

2
{γµ, γν} = −γ(µ, γν)



























. (8)

It is very important to distinguish between this case, which

arises in deriving the Klein-Gordon results that demonstrate

causality for the Dirac components and the traced result. The

arbitrary metric field gµν(x) = − 1
8
Tr{γµ(x), γν(x)} can be de-

fined in terms of γ
µ

ab
(x)’s but the untraced result for gµν(x)δac

cannot. This will be central to what follows.

We like to have the metric appear explicitly in all the

terms of the lagrangian for the reason it gives us something

to vary in obtaining a conservation law for stress-energy. One

way to do this is is to use the lagrangian

Le = i
(

gµνφaγµ:ab∂νψb − gµν(∂µφa)γν:abψb

)

− 2mφaψa, (9)

where the colon separates spacetime from scalar indices. We

define gµν = − 1
4
Trλ(µ, λν). The evolution equations are given

by the variations δφ

i
(

gµνγµ:ab∂νψb + g
µν∇µ(γν:abψb)

)

− 2mψa = 0

igµνγµ:ab∂νψb +
1

2
igµν(∇µγν:ab)ψb − mψa = 0























(10)

and δψ

igµν(∇µφb)γν:ba +
1

2
igµνφb(∇µγν:ba) + mφa = 0 (11)

so that φ evolves as ψ with m→ −m and γ→ γT.∗

Since we are about to determine the motion of the con-

served gauge invariant stress energy associated with the fields

and it is deeply connected with geometry, we make a brief

segue to derive this conserved quantity. A general action con-

tains both a lagrangian and a measure that can be related to

the metric

S =

∫

d4xL
√
−g·· . (12)

∗Note that this does not mean that the energy of the rest field is m (c = 1).

The energy is a function of the triple of fields (ψ, φ, γ) as we see next.
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Incorporating general relativity, the lagrangian density is gen-

erally written

L = 1

2κ
R(g) +Lfields, (13)

where κ = 8πG and the first term gives the Riemann curvature

and the second gives the field terms that do not depend only

on the metric. The conservation laws arise from varying the

metric δgµν from which we obtain

Gµν = 8πGT µν = −κ −2
√−g··)−1

δLfields(
√−g··)−1

δgµν
. (14)

Since ∇µGµν = 0 as an identity we have ∇µT µν = 0. This

is a local conservation law. To obtain a global one we need

a spacetime with persistent Killing vectors corresponding to

continuous symmetries. The action of gravity typically de-

stroys these as global conservation laws, however, if G → 0

and the initial data is chosen to be flat then these exist and

persist so we have the usual global symmetric conservation

laws. This justifies this as a general method of deriving con-

servation laws with symmetric stress-energy tensors for fields

on flat space when all the fields present are tensorial. Of

course, we expect any such conservation law to correspond

to a symmetry. In this case, we can vary the coordinates lo-

cally and this leaves the quantity L√g·· invariant. Since all

the derivatives are covariant, we can replace a passive coor-

dinate change on an open set with an active transformation of

the metric field gµν. Varying gµν is therefore equivalent to a

general small variation in the local coordinates. Of course,

we are considering these as fields on a flat background so that

they change in a rather simple fashion relative to the coor-

dinate changes and we should include a coordinate measure√−η and this underlying space generates full set of ten con-

served quantities (see §3).

The (symmetric) stress tensor is usually defined by∗

Tµν = − 2

(
√−g··)−1

δ
(

Lfields

(√−g··
)−1

)

δgµν

= −2
δ (Lfields)

δgµν
+ gµνLfields

= 2i
(

φaγ(µ:ab∂ν)ψb − (∂(µφa)γν):abψb

)

+ gµν

[

i
(

gαβφaγα:ab∂βψb

− gαβ(∂αφa)γβ:abψb

)

− 2mφaψa

]

= 2i
(

φaγ(µ:ab∂ν)ψb − [∂(µφa]γν):abψb

)

,

(15)

where we have varied with respect to gµν and assumed γµ is a

field independent of it in anticipation of gµν being a function

of λµ.

∗Here we make the choice of taking the determinant with respect to the

“contravariant” metric g(γµ) in anticipation of later work. This explains the

power -1 this expression.

We can similarly examine the continuous symmetry given

by the globally constant phase changes ψ → eiθψ and φ →
e−iθφ to get the conserved current

jν = 2igµνφaγµ:abψb (16)

so that ∇ν jν = 0. Here we see this current also depends on

all three fields so that the vanishing of any one of them on a

region necessitates the entirety of the physical reality vanish.

We will now consider the implications of packet motion

given these two conservation laws. Firstly, when we say

“packet” we are not referring to a packet of localized ψ or

φ as much as a localized region where the reality associated

with these fields through Tµν and jµ are nonzero. Let us also

consider a packet that is devoid of internal stress and rotation

and where the pressure is minimal. For such a packet with

sufficiently uniform interior we can average over the current

to give 〈 jµ〉 ≈ mv µ where m2 is the averaged gµν jµ jν density

and, assuming the packet preserves its structure as it moves,

vi is the local coordinate velocity of the packet. We can then

define v0 by the relation gµνv
µvν = −1. The conservation law

tells us that ρ is conserved. v µ is well defined to the extent

packet motion is so.

From 〈T µ0〉 we can define a velocity u that carries the en-

ergy in a localized packet so that 〈T µ0〉 ≈ m′u(µu0). Since

a vanishing of the current on a region implies vanishing of

stress-energy as well we have that v = u and that 〈T µ0〉 ≈
m
′(µv0) = αm(µv0). Since there are no internal stresses, 〈T µν〉 ≈

αmv µvν. By combining these expressions we derive that these

“macroscopic” variables are

vν =
〈T µν〉
α 〈 jµ〉

m = α2 〈 jµ〉 〈 jν〉
〈T µν〉































, (17)

where these are actually several equations (repeated indices

are not summed) that are all equal by the conditions above.

Now consider the parcel averaged stress-energy conserva-

tion law. Applying ∇µ jµ = 0 we have

〈∇µT µν〉 = 〈∇µ( jµvν)〉
= 〈(∇µ jµ)vν + jµ∇µvν〉
= m′ 〈∇vv〉 = 0,

(18)

which indicates the gauge invariant aspects (i.e. the reality) of

the parcel follows geodesic motion. This is not entirely sur-

prising given that it is known that the conservation laws gen-

erally dictate that classical particles follow geodesics though

the proofs are generally quite difficult [18]. The “geodesics”

here are generally curved paths in our underlying coordinate

space but appear as geodesics in the geometry most apparent

to observers.

In the next section for a theory of “lepto-electro-gravity”

we have two covariant gauge fields and one contravariant one.
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These have trivial transformation laws in the flat background

coordinates but we maintain this distinction because it seems

more relevant for observers. In this sense we think of it as

a “2+1” theory. One contravariant field is always necessary

to match the covariant derivatives that must arise in any dif-

ferential equation. The electron field is described by a (φ, ψ)

pair of fields that embody its reality with a very large gauge

group and the meaning of the reality they describe depends

not only on the metric but the covariant gravity field γµ. We

will see that these have properties that are distinct from the

positive energy positrons so we will require another pair of

fields for their description. Along the way we will introduce

a lagrangian that exists as a purely polynomial expression and

removes the need for complicated nonanalytic measures and

rational inverse matrix functions.

6 Electro-gravity lagrangian

Here we seek a lagrangian that encompasses electrons,

positrons, electromagnetism and gravity and seek to have

equations that are polynomial rather than complicated ratio-

nals that arise from the operation of taking the inverse of the

metric. For this reason we define the function g : V → T
whereV is the set of vector-plet objects λ

µ

ab
and γµ:ab andT is

the set of corresponding contravariant or covariant 2-tensors

gµν and gµν respectively. Specifically,

g(A, B) = −1

8
Tr(AB + BA).

We will establish a lagrangian that gives Dirac particle motion

in the flat space limit, electromagnetism and a form for GR

that gives a simple parallel between the motion of the gravi-

tational fields, γν and the electromagnetic ones Aν that allows

gravity to obtain the nonlinear “geometric” features of GR.

Since we are interested predominantly in positive energy

solutions we will need to introduce a separate action term Λp

for positrons that have positive mass but a reversal of sign

of the charge in the coupling. We can write the lagrangian

for the covariant gravitational field γ by substitution into the

Einstein-Hilbert lagrangian. Alternately, we can choose it to

have a similar form of the actionΛ′g as the other vector poten-

tial ΛA and the coupling terms ΛeλA, ΛpλA will involve both

the contravariant gravitational field λ and the vector poten-

tial. Finally, there will need to be some way for the covariant

and contravariant gravitational fields to relate to one another.

This will be accomplished by a Higgs-like interaction term

Λc. The general action is then defined as

S =
∫

d4xL√−g =
∫

d4x Λ

=
∫

d4x (Λg + Λλ + ΛA + Λe + Λp

+ΛeλA + ΛpλA + Λc),

(19)

where we will define Λλ shortly.

Since the measure is a nonanalytic function of the metric

but this is not retained in the usual equations of motion. We

will find that this is also true here. For reasons as above we

use the λ fields in defining the measure.

The electron part of the action is given by the substitutions

Λe = Le

(
√

g··(λ)
)−1

=

[

i
(

gµν(λ)φaγµ:ab∇νψb − gµν(λ)(∇µφa)γν:abψb

)

− 2mφaψa

]

(
√

g··(λ)
)−1

(20)

where we have, harmlessly, replaced the ordinary with co-

variant derivatives since the act on spinplet objects which are

essentially scalars. Variation with the measure present allows

their action on higher tensors to give the appropriate covariant

connection terms. This is one indication of how the physics

itself can generate the geometric aspects of gravity rather than

imposing it by fiat in the formulation of the theory’s founda-

tions.

The positron portions of the lagrangian is of the same

form as Λe but with a different pair of fields φ̃, ψ̃. The dis-

tinction comes in the form of the interaction terms. The usual

minimal coupling prescription gives

ΛeλA = − qφaλ
µ

ab
Aµψb

ΛpλA = + q φ̃aλ
µ

ab
Aµψ̃b















. (21)

It is only the sign of the charge in the interaction terms that

distinguishes positrons from electrons and it only appears in

the couplings.

The gravitational part of the action can be defined by a

simple extension of the Einstein-Hilbert action

Λg =
1

2κ
R

(

gµν(γ), gµν(λ)
) (√

g··(λ)
)−1

. (22)

R is defined in terms of gµν(γ), gµν(λ) and the connections

implicit in the expression are defined by

Γαµν =
1

2
gασ(λ)

(

gµσ,ν(γ) + gσν,µ(γ) − gµν,σ(γ)
)

(23)

and their derivatives. We expect that some induced con-

straints force g(γ)g(λ) = δ. To have this done as a result of

field interactions we exploit a “Higgs-ish” mechanism with

the coupling term

Λc = M
∣

∣

∣ gµν(γ) gνρ(λ) − δρµ
∣

∣

∣

2
(24)

for a sufficiently large mass M. When the energies in the

other terms are much smaller this drives the relation between

γ and λ to hold so that the solutions become “geometric.”

Specifically, while it is easy to enforce causality if all evolu-

tion fields obey some equation such as gµν∂µ∂νφ + . . . where

gµν is a metric with signature +2, the geometric case indicates

that slowly spreading packets in regions of slowly varying

spacetime move along geodesics. When such a relation holds
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our lagrangian has a form that can be interpreted as coordi-

nate invariant in that the derivatives act on the tensor fields

with covariant derivatives with the Γs induced by the metric

gµν = −4−1Trγ(µγν). In the next section we will see that we

can also interpret the system to live on a flat background and

derive global conservation laws.

The other gauge fields all come from lagrangians that

have electromagnetic form FµνFµν where Fµν = ∂µAν − ∂νAµ.

Specifically,

ΛA = gµα(λ)gνβ(λ)(∂µAν − ∂νAµ)

× (∂αAβ − ∂βAα)
(
√

−g··(λ)
)−1

.
(25)

It is not necessary to use covariant derivatives here since an-

tisymmetry cancels them. For example, we model the action

contribution from the “dual field” λ as

Λλ = ǫ gµα(λ)gνβ(λ) Tr(∂µλ̃ν − ∂νλ̃µ)

× (∂αλ̃β − ∂βλ̃α)
(
√

−g(λ)
)−1

,
(26)

where λ̃µ = gµν(γ)λν.∗ where we have chosen the constant ǫ

to be small so that the dynamics can be dominated by γ and

the constraints induced by the Higgs-like term.

For a function Fµ(gµν(γ)) the variation under δγν gives

δFµ =
δF

δgµν
δγν (27)

and similarly for δλ. Variation of Λg by δλ gives

1

2κ

(

Rµν −
1

2
Rgµν

)

δλν (28)

or

Gµνδλ
ν = κTµνδλ

ν, (29)

where Tµν is the stress-energy tensor for all the actions terms

other that Λg. We have implicitly assumed that we are in a

low enough energy regime and the initial data includes no

“waves” of λ so that the contributions of Λλ can be ignored.

Since the γ’s contain gauge freedom that is independent of

coordinate changes so that we can choose any γµ that give the

same gµν(γ) field, this requires

Gµν = κTµν . (30)

7 Conservation laws

We can argue the whole structure exists on a flat background

though this is just a convenient artifice among many. It is

however a very convenient one. The appearance of geometric

evolution via the additional Γ factors that make the derivatives

∗We distinguish this field with a tilde because of the earlier convention

that these are all tensor indices under the underlying flat space metric so that

“lowering” an index with g must be new field to not be ambiguous.

seem “covariant” with respect to some induced geometry of

these fields is an emergent byproduct of the kind of couplings

present. It should be noted that these Γαβγ factors are actual

η-tensors on the background space instead of affine connec-

tions. Of course, we still need to know if our equations can be

evolved for arbitrary times using this point of view. Some dis-

cussion of this, especially in the case of black hole formation

is given in [12]. For now we assume that this is unlimited

however, although other methods have attempted to justify

working on a flat background [17] it is a delicate process to

have this make sense as gravitational collapse ensues due to

the trend of the equations to become ill conditioned here. One

should not be overly comfortable with formalism in this case.

A method to handle evolution on the large regions of nearly

degenerate metric using conservation laws is proposed in [12]

The flat background has a natural set of Killing vectors

that give global conservation laws. To elucidate this consider

the lagrangian written in terms of ordinary derivatives and

make the modification by defining g(γ) = h(γ) ◦ η

Λ = L
√
−g→ Λ

√
h
√
−η . (31)

All actions on tensors induced by η-background coordi-

nate transformations are of the form

∂µAα → ∇µ(η)Aα = ∂µAα − Γαµν(η)Aν (32)

and so forth, where η is a metric (in any coordiates) that can

be varied about the flat space case. Any covariant derivatives

∇µ(g) in terms of the metric induced connections are reinter-

preted as formal couplings through Γ(g) and the ∂µ are con-

verted by this prescription. We see a problem with eqn. 31 is

that it is not invariant under general η-space coordinate trans-

formations due to the factor
√−g. It is, however, invariant

under the isometries of flat spacetime that we use to generate

global conservation laws.

Since the flat space contains a full set of ten Killing vec-

tors we have a set of conserved global quantities that now

includes the gravitational fields of the form

∂µT
′µν = 0 (33)

with the Killing (co)vector fields pν = ω̂ν, Mi jk = ǫi jk x jω̂k

and bi = x0ω̂i + xiω̂0. The globally conserved quantities in

these coordinates are

Pν =
∫

d3x pµT
′µν

Ji =
∫

d3x Mi
jk

T
′i j

C j =
∫

d3x biT
′i j



























. (34)

8 Conclusions

The notions of invariance from differential geometry and in-

variance theory are imported into physics in a fashion that

ranges from formal to ad hoc. Surprisingly, they have not
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been reconsidered from the more physical point of view that

all configurations that are indistinguishable to observers built

of the fields themselves should form the most general equiva-

lence class of systems. This enlarged meaning of “gauge” re-

quires some underlying structure. We have shown that many

of the usual objections to a flat background can be overcome

and that this allows the fields to have very simple transfor-

mation laws and a large set of conservation laws with respect

to this flat background. The observers can then perceive a

curved space with all its mathematical complexity as emerg-

ing from the nature of nonlinear and multilinear coupling

among fields. Importantly, there is a classical lagrangian with

a Higgs-like term that causes there to be such a strongly non-

linear and geometric theory of gravity to arise from the per-

spective of such observers at low energy.

An interesting by-product of this approach is that the ap-

parent co and contravariant properties of the fields in the

“physical coordinates” induced by objects for the observers

obtain their transformation properties by the equations of mo-

tion not by a by-fiat assignment. This is another aspect of

“geometry” that is determined by the physics itself. At high

enough energies we expect this geometric association to fail

and nonmetric features to become evident to the observers. In

this case the induced constraints fail and evolution becomes

potentially more difficult. One suggestion is that such a situ-

ation allows inconsistent light cone structures to be induced

for different fields and that some intersection of these gives

the proper causal structure for these fields when they are in-

teracting.

The bilinear extension of the Dirac equation and promo-

tion of the γ matrices to dynamical fields introduced a num-

ber of concerns related to positive definiteness of energy and

probability and causality of the equations of motion. The lat-

ter has been verified for packets using gauge invariant func-

tions of the fields. The former is seen to be not essential since

these quantities, while rigidly conserved, are not necessar-

ily the physical ones an observer perceives since they are de-

rived from background coordinate symmetries. The probabil-

ity function may be a nontrivial function of the fields in the

case of gravity but normalization is assured in any theory of

emergent measurement such as decoherence.

There are undoubtably many inequivalent such theories

with the same low energy limit so we have presented only

one of probably many such solutions. From here it is un-

clear how to extend this classical theory to a quantum one.

The couplings are such that they determine the local notion

of causality and it is not clear when or how well a perturba-

tive scheme, which is generally built on free fields solutions,

will work in the many body case. This is a direction for fu-

ture work.
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Bio-Precursors of Earthquakes and Their Possible Mechanism
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People observed anomalous behavior of animals prior to powerful earthquakes since

ancient times. Only in mid-20th century scientific community got interested in under-

standing what makes some animals “sensitive” to approaching earthquakes. Questions

were raised of whether we are truly observing anomalous behavior or just interpreting

it as such after the earthquake. Do animals actually “feel” the earthquakes? What are

the stimuli impacting animal behavior? Scientists looked at chemical composition of

ground water, release of some gases, sound booms and even electromagnetic activity

as potential stimuli. With no comprehensive and systematic study of animal behavior

prior to, during and after powerful earthquakes no plausible hypotheses explaining the

sensitivity exist at this point. In this article, we propose a possible mechanism based on

gravitational receptor, which each and every animal possess.

Accurate prediction of powerful earthquakes is one of the im-

portant problems faced by modern geophysics.

Rikitake (1979) presented extensive research data used

for predicting earthquakes and tried to provide theoretical ex-

planation [1]. While existing instrumental and statistical

methods of predicting earthquakes allow identification of

some patterns of future earthquakes, they do not answer the

most important questions — the magnitude of future earth-

quake and its precise time. Geller (1997) states that “exten-

sive searches have failed to find reliable precursors” [2]. He

further notes that “theoretical work suggests that faulting is a

non-linear process which is highly sensitive to unmeasurably

fine details of the state of the Earth in a large volume, not just

in the immediate vicinity of the hypocentre” [2].

Usually powerful earthquakes are accompanied with

rapid increase in speed of vertical shift of Earth’s crust in

epicenter and adjacent areas. For example, after Ashkhabad,

Turkmenistan, earthquake (October 5, 1948) as a result of lev-

eling an increase in speed of vertical shift of Earth’s crust with

a maximum near Ashkhabad was identified. Similar observa-

tion made during Tashkent, Uzbekistan, earthquake (April 26,

1966).

Therefore, we can assume, that prior to powerful earth-

quakes an increase in speed of vertical shift of Earth’s crust

can be observed.

In recent years scientists got interested in the anomalous

behavior of animals prior to powerful earthquakes. Even

though anomalous behavior of animals is long known, sci-

entific community only recently started researching this phe-

nomenon. In late 1976, USA hosted the first conference on

this subject.

The most important task facing scientists is identification

of the physical nature of the processes, which lead to anoma-

lous behavior of animals prior to powerful earthquakes.

Out of four types of forces (electromagnetic, gravitation-

al, strong and weak) only electromagnetic and gravitational

forces could be related to the mechanism of sensitivity of bio-

precursors of earthquakes. Characteristics of Earth’s electro-

magnetic field experience significant variations, which may

impact sensitivity of the mechanism. Therefore, we will not

consider electromagnetic force as the main force, which im-

pacts the mechanism of sensitivity of bio-precursors of earth-

quakes. Let’s consider gravitational force as the main force.

It is known that biological objects evolved within con-

stant influence of gravitational field of the Earth. This lead to

the creation of apparatus, gravitational receptor, allows bio-

logical objects to orient themselves in gravitational field [3].

Gravitational receptor basically consists of two main parts

— “proof mass” with a mass mp, which is capable of mov-

ing within the organ and around receptors that react to the

changes of position of “proof mass”.

One essential peculiarity of gravitational field is its con-

stant presence and our inability to shield against its impact,

i.e. all-pervading nature of the field.

One of the main characteristics of the gravitational field

is free-fall acceleration g (analogous to the electric field in-

tensity E). With changing characteristics of the field changes

the force, which impacts the “proof mass” with the mass mp.

Such changes are possible prior to powerful earthquakes.

However, there have not been successful measurements of

such changes due to inadequate sensitivity of the instruments.

Biological objects, it seems, are able to react to the speed

of changing free-fall acceleration parameter, which results

from vertical shift of Earth’s crust. If we consider the value

of sensitivity of biological objects to such changes as mp/M,

where M is mass of the Earth, then biological objects are able

to sense relative changes of the free-fall acceleration result-

ing from a vertical shift of Earth’s crust, numerical value of
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which exceeds mp/M. Evaluations showed that speed of rel-

ative changes of free-fall acceleration, resulting from vertical

shift of Earth’s crust, exceeds maximum sensitivity of gravi-

tational receptors of biological objects.

Thus, we conclude that biological objects, using signals

from gravitational receptors, can react to the relative local

changes of gravitational field prior to powerful earthquakes.

For experimental test of the proposed mechanism, we

would suggest experiments with biological objects used as

sensors of characteristics of gravitational field via continu-

ous recording of bioelectric current from gravitational recep-

tor during rapid increase in speed of vertical shift of Earth’s

crust in active seismic zones.
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Astrophysical Clock and Manned Mission to Mars
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For many years scientists of different countries are engaged in research of biological

processes, which have rhythms close to geophysical ones. The main objective of this

research was finding the mechanism of time sensor, which leads to these rhythms. In

the previous article (Akhmedov T.R. Progress in Phys., 2014, v. 10, issue 1), based on

the analysis of the known experimental data obtained from biological objects and in

consideration of the original data obtained in Tashkent State University, we came to a

conclusion that the time sensor of a biological clock is exogenous in nature. This means

that clocks setting rhythms close to geophysical for biological processes exist outside of

those biological objects. From this we conclude that there are no biological clocks, but

rather there are astrophysical clocks (APhC), which form rhythms with periods close to

geophysical within physical, chemical and biological processes.

1 Astrophysical Clocks (APhC)

Let us review the experimental data proving the existence of

Astrophysical Clock. For this experiment we put assembled

a system, schematics of which is plotted on Fig. 1.

Container (1) with distilled water was placed into

the thermostated chamber (2), where stable temperature at

103±0.1◦C was maintained. Water was boiling inside the

container (1). The water vapor went through the cooling sys-

tem (3) and precipitated into the container (4). The mass of

the evaporated/precipitated water was measured every 15 min

and a set of 4 measurements had been plotted on the Fig. 2

and Fig. 3. The experiments were carried out uninterruptedly

by a number of series of 1 to 7 days of duration. In order to

thoroughly investigate the rate of water vaporization power

supply of the thermostat was carefully stabilized, all contain-

ers and tubes and connections were thermally insulated, mass

was carefully measured and stability of the temperature was

closely monitored. The data coming from the measurements

strongly suggested the existence of CR in the physical process

of distilled water evaporation from a thermostated container.

Initial experiments were carried out in 1974. During one

of experiments it became necessary to obtain a stable flow of

water vapor of low intensity (1.4×10−5 kg/s). This experi-

mental data had been obtained in 1974 by a group of physi-

cists conducted by Prof. M. A. Asimov. Author of the present

article was a responsible head for the experiments.

2 Lunar rhythms

This study rises from my previous article [1], based on the

analysis of the known experimental data obtained from bio-

logical objects and in consideration of the original data ob-

tained in Tashkent State University. We came to a conclusion

therein that the time sensor of a biological clock is exogenous

in nature.

Scientific publications, dedicated to research of biologi-

cal rhythms with periods close to geophysical ones, present

much experimental data pointing at the existence of lunar

Fig. 1: (1) Container filled with distilled water; (2) Thermostated

chamber with inside temperature of 103± 0.1◦C; (3) Cooling sys-

tem; (4) Container where the water condensate was collected.

rhythms in biological processes [2, 3]. In 1974, a research

group conducted by M. A. Azimov in Tashkent State Univer-

sity (Uzbekistan) identified lunar rhythms in chemical reac-

tion of vapor conversion of methane at T = 450◦C. It is ob-

vious that at such temperatures we can effectively exclude

biological processes.

The stable vapor flow of low intensity was necessary for

studying of chemical reaction of vapor conversion of

methane. The reaction used in chemical industry to produce

hydrogen is described by a formula:

CH4 + 2H2O −→ 450◦C −→ CO2 + 4H2 .

To investigate time dependence of the reaction speed there

were provided stable flows of gaseous CH4 and water vapor

(deviations were ± 0.3% and ± 3%, respectively). The ex-

periment had been carried out for 540 hours in October and

November of 1974.

In Fig. 3 the experimental measurements were plotted, y

axis shows the fraction of residual methane in the converted

dry gas at the output of the reactor.

Composition of the gas at the output was analyzed by the

method of gas chromatography. Every 15 min three chro-

matographs were collected; results of 2-4 hour measurements

were averaged and then plotted on the Fig. 3. Results of
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Fig. 2: Circadian periodicity of evaporation of water from a ther-

mostated vessel at 103◦ (1974).

these studies indicated on the existence of a lunar rhythm

in the chemical reaction of vapor conversion of methane at

T = 450◦C. This temperature is noticeably higher than tem-

perature of any known living organism.

3 Shnoll effect

One more argument in favor of existence of astrophysical

clocks (APhC) is Shnoll Effect. It is shown that due to fluc-

tuations, a sequence of discrete values is generated by suc-

cessive measurement events whatever the type of the pro-

cess measured. The corresponding histograms have much the

same shape at any given time and for processes of a differ-

ent nature and are very likely to change shape simultaneously

for various processes and in widely distant laboratories. For

a series of successive histograms, any given one is similar to

its nearest neighbors and occurs repeatedly with a period of

24 hours, 27 days, and about 365 days, thus implying that the

phenomenon has a very profound cosmophysical (or cosmo-

genic) origin [4, 5].

Substantial experimental material accumulated by biolo-

gists studying rhythms close to geophysical constitutes ob-

servations of the hands of astrophysical clock, which sets

rhythms for biological processes. The rhythms for these pro-

cesses are set by external forces.

Thus, from above described experimental data we con-

clude that rhythms close to geophysical, which occur in phys-

ical, chemical and biological processes, exist because of As-

trophysical Clock (APhC).

4 How does Astrophysical Clock (APhC) work?

Let’s analyze changing of kinetic and potential energy of

atoms/molecule on the surface of the Earth. An atom/mole-

cule on the surface of the Earth takes part in following mo-

tions:

Fig. 3: Concentration of residual CH4 in % in vapor conversion re-

action output.†

1. Spinning of the Earth around its own axis with the sur-

face speed V1 = 465 cosα m/s, where α is the geo-

graphic latitude;

2. Revolving with the Earth around the Sun with a linear

speed of V2 = 3 × 104 m/s;

3. Moving with the Solar system around the center of the

Galaxy with a linear speed of about V3 = 2.5×105 m/s;

4. Moving with the Galaxy from the center of the Uni-

verse with a linear speed of about V4 = 6 × 105 m/s.

It’s known that total mechanical energy is the sum of ki-

netic energy EK and potential energy U:

Etotal = EK + U(2).

And, if any of these components or both of them change ac-

cording to a law, then the total energy will change according

to the same law. And the change can be potentially affect-

ing any physical, chemical or biological process. The factors

1-3 cause changing of kinetic energy of atoms/molecules on

the surface of the Earth with periods, respectively, 24 hours

(CR), a year (year rhythm), 180 million years (the Galaxy

“year” rhythm). The existence of the rhythms has been men-

tioned above. Analysis of the kinetic energy changing leads

us to the following formula:

Emax–Emin = 2m × VT × VE cosα ,

where m is mass of an atom/molecule, VT is thermodynamic

speed of an atom/molecule, VE is the orbital speed of the

Earth’s surface on the equator, α is the geographic latitude.

†Experimental data presented in this figure was obtained in 1972–1975,

in Tashkent State University, Uzbekistan, by Azimov’s group, headed by

Takhir R. Akhmedov.
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5 Conclusion

1. Experimental data on research of rhythmic processes with

the periods close to geophysical (circadian rhythm — CR,

lunar rhythm — LR, annual/year rhythm — YR) testify to

existence of Astrophysical hours (APhC).

2. Rhythms with the periods close to the geophysical are

experimentally observed in physical, chemical, and in biolog-

ical processes. Furthermore, the circadian rhythm (CR) both

in physical and in biological processes demonstrated a con-

nection to local time.

3. Periods close to geophysical in all processes are formed

Astrophysical Clock by change of a total energy (kinetic and

potential) of atoms/molecules located on the surface of Earth

and moving with it in a space.

4. The Lunar Rhythm (LR) observed in chemical and bi-

ological processes is a result of a change of potential energy

of atom (molecule), located on the surface of Earth. This

change in potential energy is caused by movement of the

Moon within the system Sun – Earth – Moon. All planets of

the Solar System can have similar impact on processes taking

place on Earth.

5. Biological objects (including humans) constantly have

to receive signals of astrophysical clocks (APhC) for nor-

mal functioning. Thanks to APhC biological objects (almost

closed systems) have an opportunity to exchange energy with

environment, while maintaining their integrity.

6. During a long flight on low Earth orbit the time sen-

sor of circadian rhythms is distorted for astronauts. This dis-

tortion could lead to imbalance of biochemical processes in

astronaut’s body, which could result in serious health issues.

These issues may not manifest immediately.

7. During flight to Mars, human body stops receiving sig-

nals for setting circadian, lunar and yearly rhythms. This

leads to total unbalancing of finely tuned biochemical reac-

tions inside the body. At this point nobody knows what con-

sequences this unbalancing may lead to. The difficulty of this

problem is that experiments like Mars-500 cannot provide an-

swers to these questions. One cannot turn off astrophysical

clock during experiments on Earth.

8. To all those who desire and are able to carry out ex-

periments studying the time dependence of water evaporation

within a thermostatic vessel, further I provided the technical

specifications:

• Thermostatic vessel to contain the liquid (8–10 litres of

volume);

• Thermostatic liquid — motor or vegetable oil with tem-

perature of 103±0.1◦C;

• A system to distilled water, using typical chemical lab

hardware;

• The flask with water to be evaporated should be located

inside the thermostatic vessel;

• Cooling system for water vapor condensation;

• Water passing through the cooling system should be

room temperature of 20◦C with flow rate at 1 litre per

minute;

• The frequency of measurements (time interval at which

measurements are taken) is at the discretion of scien-

tists setting up experiments (10 min, 15 min, etc.).

Objective: to plot the correlation of water vapor (conden-

sate) with the time of day. Running experiment for 72 hrs

is preferred. When publishing results of this experiment, the

researcher needs to state geographical coordinates where ex-

periment took place.
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Vectorial analysis relating to derivation of deflection of light is presented. Curvilinear

acceleration is distinguished from the Newtonian polar conic acceleration. The dif-

ference between the two is due to the curvature term. Lorentz invariant expression for

acceleration is derived. A physical theory of rotation curves of galaxies based on second

solution to Einstein’s field equation is presented. Theory is applied to Milky Way, M31,

NGC3198 and Solar system. Modified Kepler’s third law yields correct orbital periods

of stars in a galaxy. Deviation factor in the line element of the theory happens to be

the ratio of the Newtonian gravitational acceleration to the measured acceleration of the

star in the galaxy. Therefore this deviation factor can replace the MOND function.

1 Introduction

The article presented here is only a small element of a much

larger formulation [1–6] proposed to arrive at a theory of

quantum gravity and cosmology. Physicists have put in con-

siderable efforts to unify general relativity and quantum me-

chanics but without success. The string theory and loop quan-

tum gravity are still far from their goal.

Scientists are looking for a unified theory of creation. To

achieve this objective, the physicists have set up two principal

goals. First is the search for the fundamental building block

of the universe. Second is the unification of four fundamen-

tal forces in nature. This constitutes the mainstream physics.

The theory presented here regards these two principal goals

as speculative and not plausible and hence the deviation from

the mainstream physics.

Another feature of the mainstream physics is that most

of the physicists if not all, consider consciousness [5, 6] as

something outside the domain of physics and therefore when

they talk about theory of everything, they really mean theory

of everything excluding consciousness. As per the current

understanding in the physical and life sciences, much of the

scientific literature maintain strict distinction between con-

sciousness and matter. The former is considered sentient and

the later insentient. Many people are of the opinion that the

existence of consciousness in this universe is a reality and

the big bang theory could not be considered complete till it

can account for the presence of consciousness along with the

other forms of insentient matter.

Having rejected the two principal goals of the mainstream

physics, this theory proposes that everything in the universe

is reducible to energy. Therefore unity behind four forces

(bosons), fermions and leptons should be sought in energy.

Another point this theory makes is that the consciousness and

energy are two states of one and the same thing which you

may call the fundamental substance (Spirit) of the universe.

Fundamental building block of the universe is assumed to be

a micro entity, but the fundamental substance of the universe

is all pervasive and ever remains undivided.

In this theory space and time does not have any physical

existence, but they exist only in the human mind as imaginary

artifacts. Comparatively, the energy has some real existence

and it is found in myriads of forms. Again the energy is al-

ways associated with oscillations and motion, without excep-

tion. When these oscillation and motion of the energy sub-

side, it gets transformed into the unmanifest which is not the

energy and therefore does not gravitate. This unmanifest is

motionless without any oscillations and therefore impossible

to detect like empty space.

The idea of space-time arise in the human mind by way

of delusion. When a particle wave is presented to a physi-

cist, instead of seeing the oscillating energy, what he does

is, superimposes the idea of wavelength and period on this

wave and sees the space-time. All the geometrical theories in

physics are founded upon such delusion. In periodic quantum

gravity (PQG), the time does not flow in one direction, but

one gets the sense of time by comparing one period of time

with another. Hence time is a periodic phenomenon and pe-

riods are inverse of frequencies. Therefore in PQG, the Hub-

ble parameter is associated with the frequency of the particle.

Both have the same units. This eliminates the problem of

time which plagues the Wheeler De Witt equation and its as-

sociated theories like loop quantum gravity, Hartle-Hawking

wavefunction of the universe etc.

Advantage of Periodic relativity (PR) over general relativ-

ity can be seen in its use of revised principle of equivalence

which states that the gravitational mass is equal to the rela-

tivistic mass. Application of this principle gives a very sim-

ple derivation for the orbital period derivative of the binary

star [3]. And most important of all, allows the unification of

periodic relativity with quantum mechanics. Because of this

revised principle of equivalence, (modified) Newton’s inverse

square law of gravitation can be merged with the (modified)

Schrodinger Wave equation which gives the basis for peri-

odic quantum gravity and cosmology theory [4]. PR satisfies

Einstein’s field equations but does not utilize weak field ap-

proximation.

The reason general relativity (GR) got plagued with these

two problems (the problem of time associated with Wheeler
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De Witt equation and the inaccurate notion that the gravita-

tional mass is equal to the inertial mass) is its dependence

on the weak field approximation. The use of weak field ap-

proximation automatically locks the theory into having these

two problems. When you depend on weak field approxima-

tion, you cannot treat time as a periodic phenomenon and you

cannot introduce energy momentum invariant into Newton’s

inverse square law.

Another problem with GR is that the universe in this the-

ory begins with a mixture of energy (radiation) and matter

field. It doesn’t even bother to explain where these two things

come from. Another contradiction is that the equivalence of

mass and energy is the biggest feature of GR at the same time

they must have the universe begin with a mixture of energy

(radiation) and the matter field. And all the physicists find it

very comfortable to ignore the presence of life and conscious-

ness in the universe. At the same time they must have a theory

of everything.

Periodic quantum gravity and cosmology [4] is based on

the idea that there is a connection between consciousness and

energy [5]. Based on these ideas PQG proposes a unified

field of consciousness (UFC) [6] underlying the entire uni-

verse from which comes the energy and matter fields of the

big bang theory. In relating the consciousness and the energy

the periodic nature of the time is the most essential factor.

You don’t need any clock operators of the Wheeler De Witt

theory.

On the quantum mechanical side I don’t think Dirac’s lin-

ear representation of the wave function is very accurate be-

cause spin in that theory is not a part of the dynamics of

motion but it is introduced as a perturbation just like in Dar-

win and Pauli theories. Also, the selection of the radial mo-

mentum operator is somewhat arbitrary and it isn’t Hermi-

tian as pointed out by several authors. These deficiencies are

removed in the modified Schrodinger wave equation [2] in

which spin is directly introduced in the Laplacian operator.

This gives exactly same energy levels for hydrogen atom as

in Dirac’s theory and also it’s application to heavy quarko-

nium spectra gives data which are spin dependent.

When these two theories, the periodic relativity and the

relativistic wave mechanics are united, the result is the peri-

odic quantum gravity and cosmology theory [4] which yields

the entire table of standard model particles from a single for-

mula. There is no other theory of quantum gravity that can

do this.

Current article presents some corrections in previous arti-

cle [1] and perfects the derivation for the deflection of light. It

develops Lorentz invariant expression for the acceleration and

provides solution for the rotation curves of galaxies which

does not exist in GR. This solution does not have a disconti-

nuity like the one in the MOND function. The transition from

short distances to astronomical distances is continuous. This

theory gives perfect fit for the rotation curves which MOND

theory cannot give.

2 Curvilinear Gravity

In the earlier article “Periodic relativity: basic framework

of the theory” [1], we obtained correct deflection of light in

Newtonian theory by multiplying both sides of Newton’s in-

verse square law of gravitation by the factor (cosψ + sinψ).

As shown in Figs. 1 and 2 of that article, ψ is the angle be-

tween the radial vector and the tangential velocity vector. Ex-

planation given below makes it more clear that the theory is

Lorentz invariant and factor (cosψ + sinψ) introduces geo-

desic like trajectories. The details are as follows. After very

elaborate analysis, we arrive at Newton’s inverse square law

given by

m0

d2r

dt2
= −

GM0m0

r2
r̂, (1)

where GM0 = µ. Here we introduce the dynamic weak equiv-

alence principle which states that the gravitation mass is equal

to the relativistic mass. Therefore Eq. 1 becomes

m
d2r

dt2
= −

µm

r2
r̂. (2)

In classical mechanics, we have two different expressions for

the acceleration acting on a body in motion. One is a general

expression dv/dt in cartesian coordinates which include the

curvature term, and another is for Newtonian gravity in polar

coordinates d2r/dt2 based on the angular momentum vector

h, which is supposed to be a constant in order to satisfy Ke-

pler’s third law of equal areas in equal times. In periodic rel-

ativity [1] we have shown that these two accelerations are not

equal. At the same time we have maintained that the velocity

vectors in both coordinate systems are equal, v = dr/dt. The

reason for this is that the Newtonian gravity ignores the vari-

ation of angle ψ along the trajectory by assuming constant h.

As shown in Fig. 1, this angle ψ is related to curvature

through the expression

φ = θ + ψ, (3)

where dφ/ds = κ is the curvature. Newtonian gravity ignores

this curvature term by assuming constant ψ = π/2. This can

be verified from following arguments.

h =
L

m
=

p × r

m
≡
|p||r| sinψ

m
ĥ = r2 dθ

dt
sinψ ĥ. (4)

From Eq. 4 we can see that h can be the desired constant

only if sinψ = 1. This shows that the very foundation of

Newtonian gravity ignores the curvature of the trajectory of

the orbiting body. Hence in periodic relativity it is considered

unreasonable to equate the cartesian acceleration dv/dt with

the Newtonian polar acceleration d2r/dt2.

In order to account for the variation of angle ψ along

the trajectory, we propose that the absolute sum of vector

and scalar products of (µ/r2)r̂ and â is equal to magnitude
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Fig. 1: Vectors in a two-body system.

of dv/dt. The relation of these vectors to angle ψ is shown

in Fig. 1
∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
∣∣∣∣∣−

∣∣∣∣∣â ×
µ

r2
r̂

∣∣∣∣∣ −
µ

r2
r̂ · â

∣∣∣∣∣ , (5)

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
∣∣∣∣∣|â|

∣∣∣∣∣
µ

r2
r̂

∣∣∣∣∣ sin (β + γ)ĥ

∣∣∣∣∣ +
∣∣∣∣∣
µ

r2
r̂

∣∣∣∣∣ |â| cos (β + γ), (6)

where

β =

(
π

2
− ψ

)
, (7)

γ = tan−1

(
at

an

)
. (8)

Various magnitudes of the parameters shown in Fig. 1 are as

follows.

al =
dv

dt
, (9)

at =

(
d2s

dt2
+
v

ν

dν

dt

)
, (10)

an = κ

(
ds

dt

)2

, (11)

ar = −
µ

r2
=

∣∣∣∣∣∣
d2r

dt2

∣∣∣∣∣∣ , (12)

v =
dr

dt
. (13)

Substitution of Eq. 7 in Eq. 6 gives

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
µ

r2
(cos (ψ − γ) + sin (ψ − γ)) . (14)

When the tangential component of the acceleration is absent

then we have atT̂ = 0. This gives γ = 0 and Eq. 14 reduces to

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
µ

r2
(cosψ + sinψ) . (15)

Similarly we can show that

∣∣∣∣∣
dv

dt

∣∣∣∣∣ =
∣∣∣∣∣∣
d2r

dt2

∣∣∣∣∣∣ (cos (ψ − γ) + sin (ψ − γ)) . (16)

The first term on the right of Eq. 14 can be interpreted as an

angular acceleration vector with its axis perpendicular to the

plane of motion. This could be the additional acceleration

quantity responsible for the rotation of the velocity vector v

about the coordinate origin o, causing the curvature of the

trajectory.

2.1 Lorentz invariant acceleration

Little diversion here. In the earlier work [1], we introduced

deviation to the flat Minkowski metric due to the gravitational

field in the form,

(
dt

dτ

)2

= γ2n = (1 − β2)−n. (17)

Here I propose a correction to our theory and change the

method of introducing the deviation so that the deviation fac-

tor n is directly introduced in the Lorentz transformation

equation as given below.

(
dτ

dt

)2

=
(
1 − nβ2

)
, (18)

where t is the coordinate time, τ the proper time of the orbit-

ing body, n is a real number and β = v/c. The corresponding

line element in polar coordinates is,

ds2 = c2dt2
− ndr2

− nr2dθ2
− n(r2 sin2 θ)dφ2. (19)

We showed [1] that the line element Eq. 19 satisfies Einstein’s

field equations for any constant value of n. For any constant

value of n, metric 19 always remain flat. This is similar to

the line element in Friedmann model when curvature factor

K = 0. The change made in equation 18 does not alter any of

the previous derivations.
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Coming back to the main topic, in relativity we can either

write our equations in terms of proper time or alternatively

we can write them in terms of relativistic mass. Eq. 18 can be

written as

(
dτ

dt

)2

=
(
1 − nβ2

)
=

(
m0

m

)2

=

(
E0

E

)2

, (20)

where E = mc2 = hν. This gives

E =
(
E2

0 + nE2β2
)1/2

. (21)

Differentiating w.r.t. time we get

dE

dt
= v̂F = n

(
ma +

hv

c2

dν

dt

)
. (22)

Here we arrive at the same relation that we described as true

force in the previous article [1] except that now we have in-

troduced the deviation factor n. I like to further point out a

correction that this true force is same as the Lorentz force.

Here we have used the relation E = mc2 = hν. Therefore

F =
dp

dt
=

dmv

dt
= n

(
ma +

hv

c2

dν

dt

)
, (23)

where F is the Lorentz force and v the velocity vector and a

is the classical acceleration of the particle given by

a =


d2s

dt2
T̂ + κ

(
ds

dt

)2

N̂

 . (24)

Therefore, Lorentz force = Classical force + de Broglie force.

From Eq. 23 we can define Lorentz invariant acceleration al

as

nal = n


(
d2s

dt2
+
v

ν

dν

dt

)
T̂ + κ

(
ds

dt

)2

N̂

 . (25)

The de Broglie force acts along the tangent vector. Now we

equate Lorentz force with the gravitational force given by

Eq. 14

|nmal| =

∣∣∣∣∣m
dv

dt

∣∣∣∣∣

= nm

((
d2s

dt2
+
v

ν

dν

dt

)
T̂ + κ

(
ds
dt

)2
N̂

)

=
µm

r2
(cos (ψ − γ) + sin (ψ − γ)) ,

(26)

|al| =

∣∣∣∣∣
1

n

dv

dt

∣∣∣∣∣ =

(

d2s

dt2
+
v

ν

dν

dt

)
T̂ + κ

(
ds

dt

)2

N̂



=
µ

nr2
(cos (ψ − γ) + sin (ψ − γ)) .

(27)

2.2 Bending of light in periodic relativity

For the bending of light around the sun, we introduce light

parameters v = ds/dt = c, d2s/dt2 = 0 and cdt = ds, along

with κ = dφ/ds for the curvature of the trajectory in Eq. 27.

In this case we will have dν/dt = 0 because the ray is equally

blue shifted and then red shifted, and the frequency shift is 0

at the limb of the sun. This gives,
∣∣∣∣∣∣
c2

ν

dν

ds
T̂ + c2 dφ

ds
N̂

∣∣∣∣∣∣ =
µ

nr2
(cos (ψ − γ) + sin (ψ − γ)) . (28)

Multiplying both sides by dψ, we get
∣∣∣∣∣
1

ν
dνdψT̂ + dφdψN̂

∣∣∣∣∣
=

µ

nc2r2
(cos (ψ − γ) + sin (ψ − γ)) dsdψ.

(29)

We integrate both sides with proper limits. For the star light

approaching the sun we get,
∣∣∣∣∣∣

∫ ν2

ν1

∫ π
2

π

1

ν
dνdψT̂ +

∫ 0

−φ

∫ π
2

π

dφdψN̂

∣∣∣∣∣∣

=
µ

nc2

∫ 0

−∞

∫ π
2

π

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds.

(30)

For the star light approaching earth from the limb of the sun

we get,
∣∣∣∣∣∣

∫ ν1

ν2

∫ 0

π
2

1

ν
dνdψT̂ +

∫ −φ

0

∫ 0

π
2

dφdψN̂

∣∣∣∣∣∣

=
µ

nc2

∫ ∞

0

∫ 0

π
2

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds,

(31)

∣∣∣∣(ln ν2 − ln ν1)T̂ + φN̂
∣∣∣∣

=
µ

nc2

∫ 0

−∞

∫ π
2

π

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds,

(32)

∣∣∣∣(ln ν1 − ln ν2)T̂ + φN̂
∣∣∣∣

=
µ

nc2

∫ ∞

0

∫ 0

π
2

1

r2
(cos (ψ − γ) + sin (ψ − γ)) dψds.

(33)

If we add l.h.s. of Eqs. 32 and 33 we get,

l.h.s. =
∣∣∣∣0.T̂ + 2φN̂

∣∣∣∣ . (34)

From Eq. 34 we see that the magnitude of the tangential com-

ponent is zero. Therefore γ = 0. Hence substituting r2 =

s2 + ∆2 in Eqs. 32 and 33 we get

2φ =
4µ

nc2∆
. (35)

It is obvious from Eq. 35 that the value of constant n is 1 and

not 0 as was assumed in earlier article [1]. n = 1 corresponds

to the flat Minkowski metric therefore both the bending of

light and the gravitational frequency shift can be explained

corresponding to n = 1. Not only that, but no matter what

gets measured in future experiments such as LATOR, the new

measurement can easily be made to fit Eq. 35 by adjusting the

constant n.
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2.3 Curvic and conic gravity

Newtonian gravity is based on the constant vector h which

yields the conic sections. Therefore we can distinguish the

gravity that uses the Lorentz invariant acceleration as the

curvilinear (or curvic) gravity and the Newtonian gravity with

constant h as the conic gravity. Accelerations of the curvic

and conic gravity are related by Eq. 16. It also needs to be

understood that d2r/dt2 is a radial vector but dr/dt is not a

radial vector which acts along the velocity vector v. More-

over, the constant vector h does not play any role in defining

the velocity vector v. Therefore factor (cosψ + sinψ) does

not appear in this expression of velocity v = dr/dt which

remains unaltered. This can be verified from following anal-

ysis. By definition we have

cosψ =
dr

ds
, and sinψ =

rdθ

ds
, (36)

dr

dt
=

(
dr

dt
r̂ +

rdθ

dt
θ̂

)
, (37)

dr

dt
=

ds

dt
(cos (ψ + θ)i + sin (ψ + θ)j) . (38)

Substitution of Eq. 3 gives

dr

dt
=

ds

dt

√(
cos2 φ + sin2 φ

)
T̂ =

ds

dt
T̂ = v. (39)

From Fig. 1 we can verify that the unit vector acting at an an-

gle φ is T̂. Therefore Eq. 39 is not influenced by the constant

h assumption.

3 Rotation curves of galaxies

Earlier [1] we obtained two solutions to Einstein’s field equa-

tions, (
r

n

∂n

∂r

)
= 0 and

(
r

n

∂n

∂r

)
= −4. (40)

So far we have seen the application of the first solution which

requires n to be any real number constant. Now we look at

the second solution which we can write as

∫
∂n

n
= −4

∫
∂r

r
, (41)

ln(nr4) = C, (42)

where C is a constant of integration. This gives

n =
eC

r4
=

k

r4
, (43)

where

k = eC = constant. (44)

In this second solution n need not be a constant. We make

use of Eq. 27 in order to apply the second solution to rotation

Table 1: Milky Way rotation curve based on proper time. r(kpc),

v(km/s).

r v k × 10−81 n (1 − dτ/dt)

7.5 216 1.79546 0.62593 1.6246 × 10−7

8.0 220 2.10050 0.56566 1.5231 × 10−7

12.5 227 7, 52624 0.34004 9.748 × 10−8

17.5 179 33.2129 0.39061 6.9628 × 10−8

22.5 168 80.1362 0.34490 5.4155 × 10−8

27.5 183 123.309 0.23782 4.43091× 10−8

32.5 143 333.332 0.32956 3.7492 × 10−8

37.5 170 362.322 0.20210 3.2493 × 10−8

42.5 183 455.160 0.15388 2.8670 × 10−8

47.5 165 781.650 0.16936 2.5652 × 10−8

55 183 986.474 0.11891 2.2154 × 10−8

curves of a galaxies. Assuming circular orbit we substitute

ψ = π/2 and γ = 0. This gives

|a| =
µ

nr2
=
µr2

k
=
v2

r
, (45)

k =
µr3

v2
. (46)

We can write Eq. 45 as

v2 =
4π2r2

P2
=
µ

nr
, (47)

P =
2πr

v
, (48)

P2 =
4π2r3n

µ
. (49)

For n = 1, Eq. 49 reduces to Kepler’s third law, where P is the

orbital period. Substituting Eq. 46 in Eq. 43 and Eq. 18 we

can compute the ratio dτ/dt. We can apply these equations

of stellar motion to Blue Horizontal-Branch (BHB) halo stars

of the Milky Way [8]. The circular velocity estimates are

based on Naab’s simulation [9]. To this data, one additional

data point for solar radius of 8kpc [10] is added and the re-

sults obtained from Eqs. 46, 43 and 18 are shown in Table 1.

Computed values are based on the stellar mass at the galactic

center, which is 5.0924 × 1010M⊙ [11, 12]. Observed values

of r and circular velocities constrain the integration constant

k which provides a measure of non-uniform distribution of

the galactic matter and the cold dark matter at a given radius.

Hence it is appropriate to describe k as a galactic matter dis-

tribution constant. We also find that Eqs. 48 and 49 both yield

exactly the same orbital period when velocity and deviation n

along with the galactic stellar mass are used from the Tables.

For the Sun, both yield 223.4 million years.

Table 2 shows solar system data from NASA planet fact

sheets. Radial distance equal to semi major axis and mean
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Table 2: Solar system rotation curve based on proper time. r(m),

v(km/s).

Planet r × 10−9 v k n

Mercury 57.91 47.87 1.12 × 1043 1.000103

Venus 108.21 35.02 1.37 × 1044 1.000059

Earth 149.6 29.78 5.01 × 1044 1.000332

Mars 227.92 24.13 2.69 × 1045 1.000065

Jupiter 778.57 13.07 3.66 × 1047 0.997876

Saturn 1433.53 9.69 4.16 × 1048 0.985986

Uranus 2872.46 6.81 6.78 × 1049 0.99627

Neptune 4495.06 5.43 4.08 × 1050 1.00136

Pluto 5869.66 4.72 1.20 × 1051 1.014912

Moon 0.3844 1.023 2.16 × 1034 0.990824

Table 3: M31 rotation curve. k in m4, r(kpc), v(km/s), P in billions

of yrs, x = k × 10−81.

r v x n (1 − dτ/dt) P

8.5 232 6.23 1.316 3.94 × 10−7 0.225

12.5 251 16.89 0.763 2.68 × 10−7 0.305

16.5 251 38.74 0.576 2.03 × 10−7 0.402

20.5 227 90.94 0.568 1.63 × 10−7 0.553

24.5 226 156.89 0.480 1.367 × 10−7 0.665

28.5 218 263.96 0.441 1.175 × 10−7 0.80

32.5 224 371.15 0.367 1.030 × 10−7 0.888

36.5 240 460.47 0.286 9.178 × 10−8 0.933

Table 4: NGC3198 rotation curve. k in m4, r(kpc), v(km/s), P in

billions of yrs, x = k × 10−79.

r v x n (1 − dτ/dt) P

0.68 55 0.202 10.45 1.76 × 10−7 0.0759

1.36 92 0.579 1.868 8.79 × 10−8 0.0908

2.72 123 2.593 0.522 4.39 × 10−8 0.1358

5.44 147 14.52 0.183 2.2 × 10−8 0.2273

8.16 156 43.52 0.108 1.466 × 10−8 0.3213

13.6 154 206.78 0.066 8.79 × 10−9 0.5425

19.04 148 614.36 0.0515 6.28 × 10−9 0.7903

24.48 148 1305.7 0.040 4.88 × 10−9 1.016

29.92 149 2352.1 0.0323 3.99 × 10−9 1.233

orbital velocity are used. k and n are computed using Eqs. 46

and 43. (1 − dτ/dt) are of order 10−8 to 10−12 and not shown

in the table. In case of moon, earth mass 5.9736 × 1024 Kg.

is used. Value of n for Mercury shown in Table 2 should

not be compared with that used in the derivation of perihelic

precession [1] because here we have used second solution of

Einstein’s field equations with constant k, where as perihelic

precession is derived from the first solution of Einstein’s field

equations with constant n. These two solutions are derived

from two roots of a quadratic equation. The purpose of pre-

senting the solar system data is only to show that there is no

discontinuity like the MOND function. One should not look

for precision in Table 2 because it is based on circular or-

bit approximation. It is sufficient to note that n = 1 for flat

Minkowski metric is recovered at small distances.

We can also apply these equations of stellar motion to

rotation curves of M31 [13] and NGC3198 [14]. The results

obtained from Eqs. 46, 43 and 18 are shown in Tables 3 and 4.

Computed values are based on the stellar mass at the galactic

center, which is 1.4 × 1011M⊙ for M31 and 5.0 × 109M⊙ for

NGC3198.

From Eq. 27, we can see that n is a ratio of Newtonian

gravitational acceleration to the measured acceleration which

is 1 for flat Minkowski metric. From Eq. 45 we get the same

relation for circular orbits.

n =
µ/r2

v2/r
. (50)

Substitution of n in Eq. 18 gives

dτ2 =

(
1 −

µ

rc2

)
dt2. (51)

Therefore metric 51 becomes singular for the limiting radius

rl =
µ

c2
. (52)

This is the same expression which we derived earlier [1] for

a black hole.

4 Conclusion

We have presented derivation for the deflection of light from

fundamentals by introducing vectors. Here we can relate the

additional component of acceleration with the rotation of the

velocity vector which causes the curvature of the trajectory.

We have distinguished the cartesian curvilinear acceleration

from the polar conic acceleration and explained why they are

not equal even though they are derived from the same velocity

vector. We have derived expression for the Lorentz invariant

acceleration. We have presented a theory of rotation curves of

galaxies which is based on the second solution of Einstein’s

field equations which yields much better results than the ear-

lier one based on the first solution with constant n [7]. Devia-

tion factor n appears in the expression for acceleration as well

as the modified Kepler’s third law which now yeilds correct

orbital periods for the stars of galaxies. Deviation factor n

plays the same role as the MOND function in the expression

for acceleration. This kind of solution cannot be obtained in

general relativity because of the weak field approximation,

which is a different way of introducing deviation to the flat

Minkowski metric.
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Motion-to-Motion Gauge for the Electroweak Interaction of Leptons
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Comprised of rods and clocks, a reference system is a mere intermediary between the

motion that is of interest in the problem and the motions of auxiliary test bodies the

reference system is to be gauged with. However, a theory based on such reference sys-

tems might hide some features of this actual motion-to-motion correspondence, thus

leaving these features incomprehensible. It is therefore desirable to consider this corre-

spondence explicitly, if only to substantiate a particular scheme. To this end, the very

existence of a (local) top-speed signal is shown to be sufficient to explain some peculiar-

ities of the weak interaction using symmetrical configurations of auxiliary trajectories

as a means for the gauge. In particular, the unification of the electromagnetic and weak

interactions, parity violation, SU(2)L × U(1) group structure with the values of its cou-

pling constants, and the intermediate vector boson are found to be a direct consequence

of this gauge procedure.

1 Introduction

We shall apply a direct motion-to-motion gauge to the elec-

troweak interactions. In so doing, our sole tool is the counting

of the numbers of the top-speed signal oscillations in order to

arrange test particles in special configurations of their trajec-

tories possessing a particular symmetry. First we shortly re-

view the basics of the motion-to-motion measurements

(Sec. 1). Second we introduce compact symmetric configu-

rations suitable for the gauge (Secs. 2, 3). Third we apply

this gauge to construct a regular lattice suitable to unambigu-

ously transport the (integer) value of the electric charge unit

over the space-time and find that parity violating weak inter-

action is a necessary component of this (Sec. 4). In the Sec.

5, we describe some other applications of the gauge. The bur-

den of the argument is as follows. The cube-star arrangement

of electron and positron trajectories allows for the construc-

tion of a regular gauging lattice only under some conditions.

In particular, it turns out that the particle charges must be al-

tered, so as to let them leave the gauging cell intact notwith-

standing the residual uncertainty pertinent to the gauge. Aim-

ing at the finest lattice, we have found its minimal cell size

required for the gauge. This size defines the range which is

free to introduce an additional (“weak”) interaction having no

effect on the gauge itself. We can use this additional interac-

tion to realize the necessary charge conversion (the electrons

into the neutrinos). However, the top-speed signal oscillation

numbers define not a single but two trajectories, and we have

to provide the weak interaction with the property to select one

of them. This interaction must depend on spin and contains

parity violation as a necessary ingredient of electric charge

gauge and transport.

2 Motion gauged with auxiliary motion

Ultimately, mechanics is based on comparing a trajectory of

the body which is of interest in a problem to the trajectories

of test bodies that are measuring force in the related points.

Applications of the scheme also require a means to follow

motions of the body. Otherwise, one could never be sure (in

the absence of instant communication) that at a later moment

it is the same body rather than a similar one. To this end,

a top speed signal must exist in the scheme for not to loose

the object upon its possible accelerations. In the conventional

version, the required comparison is being carried out via an

intermediate reference system comprised of rods and clocks.

However, finally the real devices designed to measure the tra-

jectories of bodies are to be gauged with the use of some stan-

dard motions. Thus, narrow light rays or free fall are used to

determine whether or not the rod is rectilinear, and clock read-

ings are to agree with astronomical and/or atomic processes.

So, a reference system comprised of rods and clocks is just

an intermediary in the comparison of one motion to another.

One could guess that this intermediary might either add some

features of its own to the gauge or, on the contrary, hide some

important information in cases when the standard procedure

is used beyond its traditional scope. It is therefore desirable

to dispense with any intermediary so as to gauge motions di-

rectly, if only to obtain a criterion of suitability of the inter-

mediary. To this end, many authors attempted to define the

structure of space-time solely in terms of trajectories. In par-

ticular, natural topologies have been proposed to conform to

the special role of the time axis [1-5]. A drawback of some

of these approaches is the premise of a four-dimensional dif-

ferentiable manifold for the space-time a topology to be in-

troduced in. (However, the very idea to construct open sub-

sets out of all trajectories, rather than of only free ones, and

to deduce space-time properties, e.g., its dimension, out of

their intersections was already considered [2].) Furthermore,

topology is a too general structure, and practice requires more

details. Thus, in order to define metrics based on a subset of

trajectories, it was proposed to eliminate rigid rods (see, e.g.,

[6] and references therein); still clocks, at least in the form of

affine parameters, seemed unavoidable.

50 Felix Tselnik. Motion-to-Motion Gauge for the Electroweak Interaction of Leptons



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

But then, trajectories cannot be taken as primary entities

in a theory to be developed from scratch, even though they

might be considered directly observed (contrary to empty

space-time!). It must be explained why just the trajectories of

bodies are of particular interest rather than arbitrary changes

in nature. Already in the Einstein’s picture of the space-time,

the event is defined as the intersection point of world lines

of particles or of light pulses. This approach was further

developed by Marzke and Wheeler [7]. In actual fact, pri-

mary definitions must be substantiated by the intended ap-

plication of the theory, and therefore they must arise directly

from the desirable statement of the problem, that is, to be ax-

ioms rather than hypotheses. Of course, a general uncertain

concept of event cannot be basic for technical use that aims

at a method to provide predictions, and therefore mechanics

offers a particular kind of event, namely, contact (collision).

The idea is to leave aside the question as to what results from

the contact, assuming instead that nothing will happen, pro-

vided the contact does not occur. Whereas the notion “mate-

rial point”, i.e. “infinitesimal body”, requires a preliminary

concept of metric, the concept of contact is self-contained:

the contact either exists or not. Only such problems are al-

lowed for the analysis in mechanics. To this end, we define

trajectories merely as a means to predict whether or not the

contact of interest will occur in a particular problem upon

detecting only some auxiliary contacts to be appropriately se-

lected. Each trajectory possesses its own linear order, since

it is introduced just for step-to-step predictions. This order

introduces the topology of a simple arc on the trajectory to

provide the basis for emerging structures. For this to be pos-

sible, we have to prepare a set of auxiliary (standard) trajec-

tories in order to encode final, initial and intermediary states

(contacts) solely in terms of these. Yet the choice of standard

trajectories needs an explanation of its own. Can we dispense

with geodesics? What properties of these are actually neces-

sary for the scheme? Might these properties be deduced from

meager information?

A reliable concept to begin with is the communication of

bodies with a top speed signal (which is necessary anyway

to follow motions of the body, while ensuring its unambigu-

ous identification). Top speed signal can be defined indepen-

dently of any general concept of speed. Consider two bodies

A and B, the problem being stated of whether or not they will

come into contact. Let A contact with an auxiliary body X

which then contacts with B. Among these X’s we look for the

first to reach B, whatever ways they go. Only the order of

these contacts matters, e.g., an X might put a mark on B, so

that all the X’s, except the first, find B already marked. It is

this top-speed body that will serve as the signal. Let further

there be a triple contact (B,X,Y), such that Y is, in turn, the

first to meet A afterwards. If the contact (A,B) occurs, the

number of these oscillations (multiple “echo”) is infinite, cor-

responding to the so-called Zeno sequence. Otherwise, the

last oscillation would occur before (A,B), and then this last

oscillating body would not be a top-speed one. We could re-

verse this argument, suggesting that tending the number of

oscillations to infinity could be used to predict the occurrence

of (A,B), if in the absence of this contact the number of os-

cillations were not infinite as well. In conventional notions

this implies infinite time of oscillations, but we cannot in-

troduce space-time terms a priori aiming at a solution solely

in terms of contacts. For this purpose, let us provide in our

scheme some auxiliary X, such that (B,X) does occur. Then

we can state that (A,B) occurs, provided the ratio of the (infi-

nite) numbers of oscillations between A and B to that between

B and X tends to a finite limit. For this to be actually used,

one begins to count oscillation numbers at a moment, and the

value of the ratio is determined as its limit when the num-

ber of oscillations as measured for the contacts of the signal

with, e.g., A tends to infinity. This limit does not depend on

the moment it starts from or on the reciprocal positions of the

signals coming to A from B and X within one oscillation cy-

cle [8]. We emphasize, that only local existence of the top

speed signals is important (no cm/sec and no free trajecto-

ries to appear from the outset!). The counting of such ratios

will be our sole tool in the sequel; however in some cases

also finite oscillation numbers are suitable. (Finite numbers

of top-speed signal oscillations were already used to compare

distances [6, 7].)

We define space-time R not as something pre-existing but

rather as an envelope of combination of all possible trajec-

tories, the occurrence of contacts between which can be de-

termined by means of top speed signal. In fact a (single!)

reference system does exist in this approach, comprising an

appropriate subset of trajectories – X’s – chosen under the

following conditions: i. Any pair of them either have no com-

mon contact or have only one (at least locally – with respect

to their own topology); ii. If some trajectory A has a contact

with some other trajectory B, there exists some X with the

triple contact (A,B,X); iii. Although X’s might have multiple

contacts with trajectories not belonging to the subset, any pair

of such contacts could be separated to insert a sequence of the

top-speed signal oscillations for each of them. Moreover, just

multiple contacts determine dynamics in terms of X’s upon

using an additional subset of “charged” test bodies, the tra-

jectories of which are also encoded via X’s. Under these con-

ditions, infinite oscillation numbers provide the space-time

with differential topology as a means to clearly separate pos-

sible contacts. Moreover, space-like hyper-surfaces S and the

projections of trajectories thereon (“paths”) might also be de-

fined in these terms. The condition for a so defined contact

scheme to represent any finite arrangement of the projections

with their mutual intersections, while excluding any unneces-

sary for this purpose subsets, defines the topology of S. In the

framework of traditional topology [1-5], dim R=ind R=1, but

S is not a sub-space of R, though the set of its neighborhoods

can be induced by trajectories from R: Each neighborhood of

a point of the trajectory defines the corresponding neighbor-
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hood of this point in S, consisting of all its points connected

with top-speed signal to this neighborhood of the trajectory.

However, S is not a topological image of R, and its dimension

is to be defined independently of R.

Unlike the trajectory itself, its projection on S need not

be a simple arc, and it might have various self-intersections.

However, according to the Nöbeling-Pontryagin embedding

theorem, any n-dimensional metrizable topological space

with a countable base of open subsets can be embedded into

the (2n+1)-dimensional Euclidean space. In fact, the theorem

states that in this space its n-dimensional subspaces are free

to intersect or not, while a space of a lower dimension might

be too “dense” forcing some of them to intersect necessar-

ily, and a space of a higher dimension would add nothing to

this freedom. This is particularly clear for n=1: In only two

dimensions a line cannot pass a closed boundary line with-

out crossing it, whereas in three dimensions this is always

possible (traffic interchange, say), while the fourth dimension

would be redundant. For a finite (and even for a countable)

array of trajectories its map in S has n=1, so dim S = 3. It fol-

lows that each contact might be encoded with only three X’s.

This fact could never be understood unless the space-time is

defined as a union of actual trajectories [2] rather than being

accepted in advance. In this version, the extension of bod-

ies should itself be regarded just as their property to obstruct

some trajectories or their paths.

Upon focusing in this presentation only on some features

of motion-to-motion measurements relevant for weak interac-

tions, further analysis of geometrical properties of the space-

time that arise from this approach is left for discussion else-

where.

3 Compact arrangements of trajectories

Consider a set of trajectories with their common contact. We

can choose some triple of them to provide a basis, so that any

other member of the set can be specified with its oscillation

numbers ratios with those of the basis. However, there exists

the twin to any so defined trajectory. Indeed, let us consider

for the sake of visualization such decomposition in the rest

frame of one of bodies of the basis. Then the other two de-

fine a surface, e.g., a plane, and the dual to a trajectory is its

mirror image with respect to this plane. In order to specify

the trajectory uniquely, we have to add some internal degree

of freedom, a doublet, in close analogy to the spin variable.

Among all such sets we select a particular subset –

spheres – that is defined as follows. It is convenient to in-

troduce an additional body for the center of the sphere. The

sphere is comprised of a finite number of trajectories with

equal oscillation numbers with respect to the center body,

that is, their ratio equals 1 for each pair of the sphere mem-

bers. The sphere might be viewed as a compact arrangement

of trajectories which are specified solely by their mutual an-

gles. While the ratios of the oscillations numbers between

the members themselves to those between them and the cen-

ter are in general different, we can define for each trajectory

its neighbors as those for which this ratio is maximal. The

spheres might be used to specify a condition for forces that

are permitted to act on bodies over their trajectories. If we

accept that everything in sight must be described in terms of

signals, we have to define forces in these terms as well. Such

a rule must be independent of the space-time point, i.e. to

require the force not to alter oscillation number ratios.

Let us take the sphere consisting of A, B, C and use con-

ventional variables in order to reveal the familiar forces that

satisfy this condition. The ratio AΓBC of the oscillation num-

bers between the bodies A and B to that of A and C is [8]:

AΓBC = lim
nAB→∞

nAB

nAC

=

ln

(

uAiuBi +

√

(uAiuBi)
2 − 1

)

ln

(

uAiuCi +

√

(uAiuCi)
2 − 1

) (1)

where uAi and others are the four-velocities of the bodies, and

summation over i is implied. Evidently the ratio AΓBC will

not change under a force if the scalar products of the four-

velocities do not.

Consider the electromagnetic force, Fik. Then for velocity

of light c, the charges and masses of the bodies e and m:

duAi =
e

mc
FikuAkdsA . (2)

Hence:

d(uAiuBi) =
eA

mAc
FikuAkuBidsA +

eB

mBc
FkiuBiuAkdsB . (3)

But dsA = dsB since A and B are the members of a sphere.

Then, d(uAiuBi) = 0, if Fik = −Fki and also eA/mA = eB/mB.

Apart from electromagnetic field, anti-symmetry of which

can be expressed, in the connected space-time manifold, via

potentials as Fik = ∂Ai/∂xk − ∂Ak/∂xi, a field might also in-

clude commutators [Ai, Ak] if the components of the potential

do not commute. (Quanta of these fields must be bosons,

whereas fermions would require only anti-commutators.) We

can then reverse the argument to state that only fields pre-

serving the ratios of the oscillation numbers can appear in the

theory as bosons. Moreover, propagation of the fields can

also be expressed via appropriate contact schemes by means

of Green functions [9]. To complete the method, we stay in

need of a condition, in terms of contacts, for the constancy of

charge and mass in (3) everywhere, and in order to find this

condition we need a means to translate these values over the

whole space- time. For this purpose consider a particular sub-

set of spheres, in which the oscillation number ratios with its

neighbors are the same for each member of the sphere. Such

a sphere will be called a star. In three-dimensional space only

five stars are possible. These are known as Platonic solids.

Note that the definition of star doesn’t imply that its bodies

move uniformly.
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4 Star-based gauge of electric charge

Eventually, all that is actually measured in experiments re-

lates to motion under electromagnetic force of, e.g., particles,

products of their interactions etc. It is therefore this force pro-

portional to the electric charge of the particle it acts upon that

must be gauged in the first place. The value of this charge

is commonly accepted to be the same everywhere. Still a

method is needed to detect this identity in terms of contacts.

We want to use the stars for gauging electric charge with-

out any intermediary. To this end, we have to specify the

charge not only locally but also to develop some motion-to-

motion gauge for its translation to any point the body of in-

terest might occupy along its trajectory. This should be based

on the symmetries of stars, which can easily be expressed in

terms of equality of some oscillation numbers.

Suppose all the members of a star (in the gauge procedure

we will call them particles) are electrically charged with equal

e/m values and move only under mutual electromagnetic in-

teraction. In any star comprised of identical particles they

move along straight lines repelling each other, and the parti-

cles cannot reach the center. Moreover, the trajectories might

become curved, provided some of the particles differ from

others in charges or masses, and for this reason they miss

the center as well. But in a symmetry-based charge gauging

procedure, it is the disparity of charges and masses that is de-

tected as a star symmetry breaking. If the particles miss the

star center anyway, we cannot be sure that the symmetry is not

broken just at the closer vicinity of the center, still being ob-

served far from it. We must therefore use for the gauge only

neutral as a whole stars with equal numbers of positive and

negative particles. Of all Platonic solids, the center is reached

only in the cube with opposite signs of the charges between

the tetrahedrons the cube is comprised of. Although in the

cube star the particles keep moving along straight lines (even

if the absolute values of their charges differ between its two

tetrahedrons, while being identical within each of them), the

symmetry will be broken because the tetrahedrons are being

differently accelerated by mutual attraction.

Starting the counting of the oscillation numbers between

the particle and an introduced, for the sake of simplicity,

imaginary central particle at a moment before the contact,

we detect the symmetry breaking if these numbers, as mea-

sured at the center, differ at least by one oscillation. In the

limit of the smallest star size, defining the highest precision

of electromagnetic gauge, one tetrahedron nears the center

over only one oscillation while another — over two oscilla-

tions. At a smaller initial radius the second oscillation has no

time to occur. Since we detect only integer numbers of sig-

nal oscillations, the values of charge to be detected must be

discrete. Indeed, suppose that the charges differ by some in-

finitesimal value. However close to the center the symmetry

was detected, we cannot be sure that asymmetry could still be

detected upon continuing the counting, since nothing is being

registered in between the neighboring contacts. So, we are

able to detect with our method only discrete values of charge

(and/or mass), hence a minimum value of charge e can be

registered, the next value being 2e. Now, whereas in a given

external field acceleration depends on e/m, for a case of in-

teracting particles it depends on e2/m, and in order to observe

the symmetry of a star the masses and the absolute values of

the charges of its particles are to be equal.

The particles of the tetrahedron having the charge 2e ex-

perience smaller acceleration as compared to the tetrahedron

having the charge e. The related symmetry breaking gauge

condition — one extra oscillation — is reached at some fi-

nal radius rmin. Smaller radii are not involved in the gauge

procedure, leaving this region free to introduce a new interac-

tion under our general trend to regard possible in mechanics

everything described with the motion-to-motion schemes. In

the next section, we will find such an interaction to be neces-

sary for the gauge itself.

5 Application to electroweak interactions

With the basic cube star at hand we proceed to develop the

whole regular lattice, along which the value of the electric

charge can be transported to a point of the trajectory in ques-

tion. Along our general lines, the regular lattice must com-

prise elementary cube-star cells. For this purpose, we use

some particles of one star, after they pass its center, as a seed

for the next star. According to Sec. 2, just three stars are suf-

ficient to completely define their next star. As a matter of

fact, this simple picture cannot be trusted, because deviation

of the charge at radii that are smaller than those involved in

the gauge for the finest lattice might either prevent electrons

and positrons from escaping the star against the exit potential

barrier formed by the attraction of the other members of the

star or to have a final energy differing from what is needed

as the input energy of the next star. Even small charge devi-

ation are important, since the energy near the minimal radius

is typically much higher than the energies of the particles at

the star entrance, and momentum conservation would yield

large final fluctuations there; moreover, the deviation might

be collected over a sequence of stars. In particular, even low

level radiation that has a small effect on the matching of in-

coming to outgoing energies in a single star might cause large

deviations over long sequences.

Radiation is negligible in stars comprising large bodies,

and our gauge is quite feasible in this case. Long sequences

might then be directly arranged, in which the outgoing bodies

are directly used in the next star, since their velocity return to

the initial values being decelerated after passing the star cen-

ter. This is impossible in the limit of elementary particles. If,

however, a new — “weak” — interaction converts the charge

of the particles to zero at the smallest radius of the symmetry

detection, the gauge becomes independent of radiation. Being

constrained to radii that are smaller than those involved in the
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electric charge gauge, such a conversion doesn’t obstruct the

gauge. Over a larger scale, one could consider stars consist-

ing, e.g., of ions, which can change their charge via charge

exchange or stripping. We, however consider the limiting

case of the finest lattice comprised of stars having the small-

est possible size, still allowing the motion-to-motion charge

gauge. Then only elementary particles might participate in

the lattice, and an elementary neutral particle must complete

the collection. It is just in this extreme case the weak interac-

tion with its parity violation appears.

In order to form the lattice, this newborn particle, the

“neutrino”, has then to be converted back into the electron

of the next star. This can happen under the same weak inter-

action, provided the neutrino collides with the anti-neutrino

to create the electron-positron pair. Though never observed in

practice, such a limiting process, as well as the charged star it-

self — with its eight particles’ simultaneous collision, should

be considered a feature of our formal language to question

nature, providing as concepts for theories so also rules for ex-

periments. We need therefore to introduce intermediate cube

stars made up of only neutrinos and anti-neutrinos and posi-

tioned at the corners of the charged cube. These neutral stars

are “blind” in the sense that their symmetry cannot be de-

tected electromagnetically. Still, suitability of the whole reg-

ular lattice might be detected, provided the following charged

star is found to repeat the original symmetry. So, we need

a doublet consisting of electrons and neutrinos to prepare a

regular lattice. The doublet corresponds to two charge states

that convert one into another at the vertices, suggesting the

SU(2) group for transformations of the inner (charge) space

in the gauge field theory, but now it appears as an indispens-

able mechanism to realize the regular lattice by means of the

motion-to-motion gauge.

Our next step is to define all the members of the next star

starting with the trajectories that are continuations of its three

preceding stars. For any star, it is sufficient to take a basis

of three trajectories to determine all the others. In order to

visualize this construction, it is convenient to proceed using

the conventional picture, that is, to imagine the cube star in

its center-of-mass (CM) reference system as eight particles at

its vertices moving toward the center with equal velocities v

(β = v/c). Let us take, for example, the trajectory A and its

neighbors B and C as the basis for the star to be constructed

and choose the line of A for the x-axis, the line through the

cube center parallel to the line between the vertices B and

C for the y-axis, and the z-axis as orthogonal to these two.

We have to find D as the third neighbor of A. In so chosen

coordinates, the decomposition coefficients of the basis are:

βAx = β, βAy = βAz = 0

βBx = βCx =
β

3
, βBy = −βCy = β

√

2

3

βBz = βCz = β

√
2

3











































, (4)

and those of D:

βDx =
β

3
, βDy = 0 , βDz = − β

2
√

2

3
. (5)

But we know from Sec. 2 that via the oscillation num-

ber ratios counting — our sole means — the basis A, B, C

defines actually two trajectories, that is, there exists another

trajectory E besides D with the same ratios of the oscillations.

In order to determine the coordinates of E, we transform (4)

and (5) to the reference system, in which A is at rest, to find E

there as the mirror image of D, and then to return to the CM

system to find the coordinates of E there. From the relativistic

transformation formulae for velocities, we find:

β
′

Ax
= β

′

Ay = β
′

Az
= 0

β
′

Bx = β
′

Cx = − β
2

3 − β2

β
′

By = − β
′

Cy = β

√

6(1 − β2)

3 − β2

β
′

Bz = β
′

Cz = β

√

2(1 − β2)

3 − β2

β
′

Dx = − β
2

3 − β2
, β

′

Dy = 0

β
′

Dz = − β
2
√

2(1 − β2)

3 − β2




























































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























































. (6)

Using (6), we obtain the mirror image E of D trajectory

with respect to the plane defined by the transformed B and C

velocities as:

β
′

Ex = − β
2(3 − 5β2)

(3 − β2)2

β
′

D
′
y
= 0

β
′

D
′
z
= β

2
√

2(1 − β2) (3 + β2)

(3 − β2)2















































. (7)

Upon back transforming (7) to the laboratory reference

frame, we find finally:

βEx =
β

(

(3 − β2)2 − 2(3 − 5β2)
)

(3 − β2)2 − 2β2(3 − 5β2)

βEz =
2
√

2 β (1 − β2)(3 + β2)

(3 − β2)2 − 2β2(3 − 5β2)



































. (8)

Though in our example (D placed between B and C) E

moves in the same xz plane as D, (8) does not define a vertex

of the cube. Even the absolute values of the D and E veloci-

ties differ already in the order of β, though their oscillations

numbers with respect to the basis are the same. So, upon con-

structing the next star we must introduce some additional —

internal — degree of freedom, helicity, to define just D but

not E by means of choosing a particular order in the basis A,
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B, C. Mathematically, this is similar to the spin variable, the

spin being directed either in the direction of the momentum

of the particle or oppositely. So, parity violation turns out to

be a necessary property of the motion-to-motion gauge, since

only the projection of spin on the momentum direction con-

veys the necessary information to select the appropriate tra-

jectory out of the two. In the electron/positron cube star, the

opposite sense particles belong to different tetrahedrons, and

of the two particles on each main diagonal of the cube one is

the electron while another – the positron. Therefore the order

of the basis for the electron is seen as reversed from its oppo-

site positron, and the product of parity and charge conjugation

is the same for both (CP conservation).

We are able now to use parity in the electric charge gauge

as performed solely with photon oscillations counting. In the

symmetric cube star magnetic field is zero on the trajecto-

ries, hence there is no orbital angular momentum, and only

the spin of the particle defines its total angular momentum.

Then our electric charge gauge fails to distinguish between

particles with left and right orientations, letting both enter the

weak interaction zone. In order to define the fourth trajectory,

the neutrinos must be provided with a definite, e.g., left, he-

licity, and therefore the charged star must generate only these.

To this end, the weak interaction must be spin-dependent to

create only left-handed neutrinos (and right-handed antineu-

trinos) in the collision of the particles in the charged star. It

is sufficient to consider only the electron and its neutrino, the

argument being similar for their antiparticles. In the blind star

the neutrino will turn into the electron with the same projec-

tion of its spin in virtue of the angular momentum conserva-

tion.

For the left-handed electrons in the charged star, the func-

tion of the weak interaction is dual. On the one hand, the

weak interaction for the left-handed electrons possesses its

own dynamics, since it should match the output and input

energies in the sequence of charged stars over the whole lat-

tice. On the other hand, its intensity defines charge conver-

sion probability, scaling as γ2 = (1 − β2)−1 according to the

general properties of all acceptable fields as satisfying the

condition (1), and the same field should also accelerate the

electrons to maximize the cross-section of charge conversion

along with minimizing that of annihilation. (The latter scales

as γ−2; so the ratio of the related probabilities (however small)

is proportional to γ4.) This relationship of the dynamics and

the charge conversion implies their common coupling con-

stant. For the same reason charged particles created in the

neutral star are to leave the weak interaction region avoiding

annihilation.

When the left-handed electron passes the weak interaction

region of the star, it has some probability either to turn into

the neutrino or to annihilate or to cross this region intact. In

the latter case this left-handed electron might be reflected by

the exit potential to pass the star center in the opposite direc-

tion now as a right-handed one. Being reflected once again,

this electron can turn into the neutrino becoming left-handed

again, thus sharing the total neutrino flux. This cannot be al-

lowed for the gauge, since the time moment of this electron

would differ from that of the normally leaving star electron to

result further on in the incorrect initial moment of the new-

born electron in the next star. This unwanted process can be

suppressed by annihilation of the electron-positron pair when

the reflected particles flip their helicity. The related probabil-

ities depend on the value of the weak coupling constant gL,

given the electromagnetic coupling constant e (the subscript

L refers to the left-handed electron).

Let us first consider the energy matching dynamics ig-

noring radiation. In the charged star, the electron is being

accelerated from γi at the radius ri, as defined by the finest

star cell still possible for the gauge of electron charge, up

to some γ f at rmin ≪ ri [10]. As any field satisfying the

general motion-to-motion condition (1), the weak field has

to satisfy a wave equation [9]. In particular, the finite range

weak interaction could be expressed via the Yukawa potential

gr−1 exp(−r/rmin) satisfying the wave equation with an addi-

tional “mass” term. For not to disturb the charge gauge, the

weak potential should be at most of the order of the Coulomb

potential e2/r at the minimal gauge-defined radius rmin. Apart

from the short range, parity violation and electric neutrality,

the dynamical behavior of weak field should be quite similar

to that of electric field, as prescribed by (1). For the esti-

mations let us approximate the weak field Yukawa potential

with its averaged factor g2/r, analogous to the electromag-

netic e2/r, though defined only within the weak field range

r/rmin ∼ 1: For r/rmin < 1, the potential gr−1 exp(−r/rmin) ≈
g/r − g/rmin constant second term being immaterial. We in-

troduce therefore a combined radius rL, rL = (e2 + g2
L
)/mc2 to

write the following equation for γ in the CM reference sys-

tem:

γ3 = γ3
f + 3ArL

(

1

r
−

1

rmin

)

(9)

where A ≈ 10 represents the force created by all the other

particles of the cube star together [10]. In dimensionless vari-

ables ηL = 3ArL/rmin and x = r/rmin (8) reads:

γ3 = γ3
f + ηL

(

x−1 − 1
)

. (10)

In the transition from one star to the next, the electron

starting with γ = γ f is accelerated by both the electromag-

netic and weak forces from rmin down to some smaller r′,

where it turns into the neutrino, which moves to some r′′ on

the opposite end of the weak region under the weak force

only, then this neutrino moves freely to start being acceler-

ated by the weak field of the neutral star at rmin, where it

turns into the new electron at r′′, which finally decelerates by

both the electromagnetic and weak fields to become a mem-

ber of the next star, now at its own ri, where it must have

γ = γi. In this oversimplified scenario the total contribution

of the weak field over the whole path from the output of one
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charged star to the input of the next charged star is zero, and

it is the sole electric field, which is active only over its parts,

defines the final velocity. In order to obtain a non-zero re-

sult also for the weak field, we have to switch it on and off

over some parts of the transition. A natural means to realize

this switch is to include an intermediate particle with a dif-

ferent mass as its carrier. This is the typical situation for a

random process (at least, for a local one [11]), e.g., for quan-

tum mechanics: the described with the wave function particle

can be found (with some probability) anywhere at the same

moment, still remaining point-like. The required intermedi-

ate particle will then have some mass M, the value of which

must be large, being defined only within the short weak field

range Λ = ~/Mc ∼ rmin, so describing the transition solely in

terms of the charge gauge.

For the energies relevant in our gauge procedure such a

massive particle can only be a virtual one, its sole role con-

sisting in correctly transporting the momentum, charge and

spin data. For this to be possible, this meson must possess

its own charge and polarization, having the spin equal to 1

to preserve the total angular momentum in the charge con-

version, since the two other particles — the electron and the

neutrino — have spin 1/2. Similarly, transporting the value

of momentum as encoded by means of the boson properties

implies its motion. Then the moments of creation and decay

of the boson must be separated by a time interval, however

short due its small velocity for the large mass. The whole

transition between the charged stars will now look as follows.

In electron at rmin having γ = γ f is being accelerated to reach

the energy mc2γ′ at r = r′. Here the electron turns into the

intermediate boson, non-relativistic because of its large mass,

moving with the velocity v = c(γ′2m/M)1/2.

Over the characteristic time Λ/c the boson moves a dis-

tance of the orderΛ(γ′2m/M)1/2 ∼ rmin(γ′2m/M)1/2 (neglect-

ing acceleration due to its large mass) to turn into the neu-

trino, moving with the same energy the distance ∼ ri with

velocity c to turn back into the boson at r = r′′ (now mea-

sured from the center of the neutral star). Here the newborn

electron is being decelerated, again by the electromagnetic

and weak forces to reach γ = γi at r = ri as measured from

the center of the next charged star. In order to get in the

course of the transition to the required γi given γ f , we put

r′′ = r′ − rmin(γ′2m/M)1/2 to obtain for the whole transition:

γ3
i = γ

3
f + ηL















x′−1 −
1

x′ −
√

2m/Mγ′















. (11)

This equation should be supported with the equation for

γ′ = γ(x′):

γ′3 = γ3
f + ηL

(

x′−1 − 1
)

. (12)

We eliminate x′ from the system of (11) and (12) to ob-

tain:

F(γ′, ηL) = γ3
f
− γ3

i

−

(

ηL + γ
′3 − γ3

f

)
√

2m/M γ′

ηL −
(

ηL + γ′3 − γ3
f

)
√

2m/M γ′

= 0.

(13)

Still, the condition of reducing γ from γ f to γi in the

course of the whole transition doesn’t define the points r′ and

r′′ of the charge flips uniquely, unless the charge conversion is

connected with the related dynamics (otherwise the flip might

occur at any point within the weak interaction region), and

we look for the maximum of γ′ to achieve the maximal ratio

(increasing as γ′) of the charge conversion cross section to

that of the dominating (two-photon) electron/positron annihi-

lation.

The equation (13) implicitly defines γ′(η) given γ f and γi,

and the condition for its maximum dγ′(ηL)/dηL = ∂F/∂ηL =

0 (provided ∂F/∂γ′ , 0 at ηL = ηL(max)) yields:

ηmax =
(

γ′3max − γ
3
f

) 1 +
√

2m/M γ′max

1 −
√

2m/M γ′max

. (14)

Substituting (14) in (13), we obtain the equation for γ′max,

given γ f and γi:

γ′3max −
(

γ3
f − γ

3
i

)

(

1 −
√

2m/M γ′max

)2

4
√

2m/M γ′max

− γ3
f = 0. (15)

For the finest lattice as defined by the electron charge

gauge, the equation for γ f is similar to (9), in which, how-

ever, the electric force, introduced via re = e/mc, acts alone:

γ3
f = γ

3
i + 3Are

(

1

rmin

−
1

ri

)

. (16)

In the gauge procedure, the value of γi is of great im-

portance, because it is this lowest velocity that mainly con-

tributes to the sensitivity of asymmetry detection in the stars:

Since ri ≫ rmin, it will be: γ f ≫ γi and the exact value of

γ f (since β f is very close to 1) is but of minor importance in

the integration of the disparity between the tetrahedrons [10].

However, γ f is important in equations (9)-(15).

With resulting from the gauge condition [10] γi ∼ 3 and

rmin ∼ 3×10−3re, we find from (16): γ f ∼ 30. Then from (15)

and (14): γ′max ∼ 50 and ηL(max) ∼ 105. This value of ηL(max)

corresponds to g ∼ 2e, in agreement with the experimental

data: sin θw ∼ 0.5.

Until now we ignored radiation, and we have to consider

its importance. In the gauge process itself, i.e. for ri > r >

rmin, radiation decreases the value of γ f , and in the weak field

regions, rmin > r > r′ and r′′ < r < rmin, radiation is active as

well. Both effects decrease the related γ’s and therefore the

probability of the charge conversions.
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Whereas only the mean values of mechanical variables

(behaving classically) are important in our gauge, as based

solely on the top-speed signal oscillations, the analysis of the

role of radiation requires the full quantum theory. Indeed,

it was shown [10] that in the classical limit, corresponding

to multiple soft-photons emission [11], radiation restricts the

size of the star for the finest lattice down to the order of re.

But it is well known that the classical field theory is no longer

valid at these distances. Instead, we are bound to calculate

only the cross sections for the emission of single photons.

Contrary to the classical limit, single photon radiation in

QED occurs only with some probability, i.e. there is also

a finite probability for the absence of emission. Only this

case is relevant for our gauge, since radiation decreasing the

related γ accordingly decreases the proportional to γ ratio of

charge conversion cross section to that of annihilation. If the

radiation cross section is not too close to unity, the charge

conversion events which are not accompanied by radiation

might be isolated as providing correct γ f to γi transitions in

accord with (11).

In the close vicinity of the star center only some small

central part of the wave packet can take a part in the inter-

action, which is the source of radiation. Therefore, only a

small part of the infinite range Coulomb interaction is actu-

ally involved, behaving there like a short range interaction.

A similar effect in scattering on (neutral) atoms is accounted

for by means of “screening” the potential [11, 12]. When the

particle interacts with atom, this screening appears as a form

factor effectively reducing the range of Coulomb potential to

the size of the atom. In the same way, the short range Yukawa

potential could be regarded as a screened initially long range

fictitious potential, and we consider also the electromagnetic

interaction to be screened as well, because now the flux of

incoming particles should be normalized for a wave packet

of the relevant size rather than for a plane wave. We start

with the ultra- relativistic case for the radiation cross section

formula in the center-mass system [11]:

dσrad = 4αr2
e

d f

f

(

1 −
2

3
(1 − f ) + (1 − f )2

)

×
(

ln 4γ2
0

(

1

f
− 1

)

−
1

2

)

,

(17)

where α = e2/~c ∼ 1/137 is the fine structure constant f =

~ω/ǫ0 (ω is the frequency of the emitted photon, ǫ0 is the en-

ergy of the incident electron in the CM system, γ0 = ǫ0/m).

Integrating (17), we find σrad. The integral diverges for small

f . For a simple estimation let us replace ln(1/ f − 1) with its

average value Q. Integrating f from some fmin, (to be deter-

mined later) to 1:

σrad = 4αr2
e

(

Q −
1

2
+ 2 ln 2γ0

)

×
(

5

6
−

4

3
(ln fmin − fmin) −

1

2
f 2
min

)

.

(18)

In the scattering matrix theory, the analysis is carried out

over the infinite distances from the interaction region both

for initial and final states of the system, so that the incoming

and outgoing wave functions are plain waves over the whole

continuum, and in the derivation of (17), the integral for the

Fourier component of the infinite range Coulomb potential is

taken from 0 to ∞. In our case, only radiation events within

the star are important, e.g., for ri > r > r′ in the charged star

and for r′′ < r < rmin in the neutral one. We shall therefore

accept a model, in which the wave functions outside the inter-

action regions are still plain waves though bounded laterally

to the interaction radii. These functions are given in advance,

not taking care of how they were actually prepared. Then we

can replace r2
e with r2

i
for the gauge region in (17) and (18), so

normalizing the plane wave spinors in the S-matrix element

with one particle in r3
i

rather than in the unit volume, in ac-

cord with the flux density of one electron per r2
i
. Similarly,

rmin will replace re for the weak field region. We have also to

modifyα to account for the weak potential: αL = e(e+gL)/~c.

It will then be possible to use the Feynman diagram tech-

nique to calculate the radiation cross sections. Considering

the interactions as existing only in these regions, we calculate

the related interaction potential in the momentum representa-

tion. In particular, for the pure Coulomb potential eA0(q) (the

time component of the four-vector eAi) in the gauge region

(ri > r > rmin) we write (see, e.g., [11]):

A0(q) = − 4πe

∫ ri

rmin

dr exp(iqr)

=
4πe

q2

(

cos(qri) − cos(qrmin)
)

,

(19)

where we put the boundary radii instead of usual ∞ and 0.

(If ri were to tend to infinity, the exponential factor with a

negative real power should be included in the integrand (to

be set zero at the end in order to cancel the first term in the

parenthesis, while and the second term becomes unity). In

the derivation of (17) (see, e.g., [11, 12]), the argument q has

to be set equal to the absolute value of the recoil momentum

according to the total four-momentum conservation. In the

ultra-relativistic case q ≈ mc/~, so for the gauge region (ri ∼
re ≫ rmin), qri ∼ e2/~c = α≪ 1, and it follows from (19):

A0(q) = −
2πe

q2
α2. (20)

Since the S-matrix element is proportional to (20), the ra-

diation cross section (17), proportional to the S-matrix el-

ement squared, becomes modified by the additional factor

α ∼ 10−9. In order to obtain the total probability wrad of

emission in the interval (ri > r > rmin) of a single photon with

fmin < f < 1, the modified according to (20) cross section

(18) is to be multiplied by the flux j = 2v/V (v ≈ c is the

velocity in the CM system, and V ∼ r3
i

is the gauge region

volume) to obtain the probability for unit time, and then mul-

tiplying by ri/v to find the probability for this region. With all

Felix Tselnik. Motion-to-Motion Gauge for the Electroweak Interaction of Leptons 57



Volume 11 (2015) PROGRESS IN PHYSICS Issue 1 (January)

these substitutions:

wrad ≈ 4α5

(

Q −
1

2
+ 2 ln 2γ0

)

×
(

5

6
−

4

3
(ln fmin − fmin) −

1

2
f 2
min

)

.

(21)

Due to the factor α5, this probability is very low, unless

fmin is sufficiently small. For wrad to be of the order of unity, it

must be: ln(1/ fmin) ∼ α−5, whatever all other factors in (21)

might be. Evidently, such soft photons cannot bring about

any changes in the value of γ f in the gauge region. The same

reasoning and with the same conclusion holds in the weak

field region for γ′max and ηmax.

The factor α4 in (21) suppresses radiation of the elec-

tron that does not pass the star center, the nearest vicinity

of which provides main contribution to radiation. However,

for the electron that passes the center without turning into the

neutrino the full radiation cross section must be accounted

for. As it follows from (18), the probability of emitting even

rather high energy photons is of the order of unity, and it will

be collected over a sequence of stars, since radiation can only

decelerate the electron. Loosing even a small part of its final

energy (≥ mc2γi), this electron either reaches a lower value

of γi than allowed for the next stars, or even fails to over-

come the exit potential barrier of the last star of a short star

sequence, so destroying the gauge lattice.

Although the right-handed electrons take no part in the

charge conversion, they might ruin the charge gauge. Indeed,

their helicity becomes opposite if they are reflected by the

output electromagnetic barrier of the star, and the initially

right-handed electron becomes a source of the left-handed

neutrino as well. Such oppositely moving neutrinos would

make uncertain the choice of the charge sign in the next star,

being admixed to the proper antineutrinos generated by the

positrons. The flux of these neutrinos could be somewhat

suppressed by the electromagnetic electron-positron annihi-

lation, provided the weak interaction acts against the electro-

magnetic acceleration. So, for the right-handed electron the

weak interaction also receives some dynamical meaning.

In order to determine the value of the corresponding cou-

pling constant gR in the Yukawa potential, we have to find the

probability wan of the two-photon electron-positron annihila-

tion when they are decelerated from γ = γ f down to γ = 0 at

the turning point. We start with the well-known Dirac’s for-

mula for the annihilation cross section in the CM system. In

our case it looks:

σan =
2πr2

min

γ4
√

γ2 − 1

[ (

γ4 + γ2 −
1

2

)

ln

(

γ +

√

γ2 − 1

)

−
1

2
γ
(

γ2 + 1
)

√

γ2 − 1

]

.

(22)

The probability of annihilationwan, increasing with decel-

eration, depends on the function γ(r), which, in turn, depends

on r:

γ3 = γ3
f − ηR

(

1

x
− 1

)

(23)

where ηR = 30rR/rmin, rR = (g2
R
− e2)/mc2, x = r/rmin. Anni-

hilation probability dw an over the interval dx is:

dwan = σan

2v

r2
min

dx. (24)

From (22), (23) and (24) we obtain:

wan = 12πηR

∫ γ f

1

dγ

×

(

γ4−γ2− 1
2

)

ln
(

γ+
√

γ2−1
)

− 1
2
γ
(

γ2+1
)
√

γ2−1

γ2
√

γ2−1
(

γ3
f
+ηR−γ3

)2
.

(25)

Given γ f , this equation defines a function wan(ηR), which

possesses a maximum. A simple numerical calculation with

γ f ≈ 30 gives: wan(max) = 0.12 for ηR(max) ≈ 2500. This

value of ηR(max) corresponds to gR ≈ 1.15e, again in close

correspondence with the experimental value of cos θw. In a

standard probabilistic approach, this 12% difference is suffi-

cient to reliably discern between particles and antiparticles.

6 Conclusion

In summary, our argument goes as follows:

i. A direct gauge of electric charge using motion-to-

motion measurements might be based on the very existence

of a (local) top-speed signal, no matter how high this speed is

in any units whatsoever.

ii. Letting this signal oscillate between test particles and

counting the ratios of the (infinite) numbers of these oscilla-

tions, we are able to detect the symmetry of the stars arranged

as Platonic solids.

iii. Of the five Platonic solids, only the neutral as a whole

cube-symmetrical star, consisting of the two tetrahedrons –

one for the electron and another for the positron – is suitable

for the electric charge gauge, since it is the only symmetry

in which the particles move under electrical interaction along

straight lines to cross at their common center.

iv. In order for the electron charge to be gauged as having

the same value everywhere, the stars must be arranged in a

lattice extended over the whole space-time, in which the ini-

tial star arrangement gives rise to its followings by means of

the same signal oscillations counting.

v. For this to be possible, the method must uniquely de-

fine the transitions in the star sequences; however, the oscil-

lation ratios counting method defines two trajectories rather

than only one, and some internal degree of freedom (spin)

should be given the particle to make the choice unique.

vi. With our gauge confined to integer charge values and

sensitive to deviation from these, however small, beyond the
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gauge region, transitions between the stars in the lattice be-

comes uncertain; however, our charge gauge leaves free some

vicinity of the star center, where an additional interaction not

destroying the gauge might exist, and it could be used for

charge conversion to make this uncertainty immaterial.

vii. The weak interaction realizes the necessary charge

conversion with the neutrino that must also provide the nec-

essary information to select a single trajectory out of the two

in the next star, their spin projection onto the momentum di-

rection being the sole source for this selection. The transition

within the lattice also requires appropriate matching between

the in and out energies of the electrons in the succeeding stars;

this can be reached only with an intermediate vector boson.

viii. The design of the lattice requires only one conversion

of the electric charge, so involving only two charge eigen-

states (the SU(2) doublet).

ix. The charge gauge naturally combines the weak and

electromagnetic interactions in a single interaction as pertain-

ing to the common cube star, and the numerical relationships

between the three coupling constants directly follow from this

gauge.

It is fascinating that just the existence of top-speed sig-

nals is sufficient to predict the existence of the weak interac-

tions with its range, parity violation and even the intermedi-

ate boson, basing solely on Platonic symmetries. The elec-

troweak segment in the standard model suggesting SU(2)L ×
U(1) group with adjusted coupling constants to account for

the previously observed in experiments data including par-

ity violation (while PC is still preserved for the leptons) pro-

vides good predictions as well. One should appreciate, how-

ever, the difference between a theory predicting these features

from its own ”first principles” and a developed ad hoc the-

ory that only explains, however successfully, already known

experimental results. Moreover in other applications, the ex-

istence of top-speed signal is sufficient to construct the non-

singular part of the Green function (the so-called Huygens’

tail) in general relativity [9]. Also, motion-to-motion mea-

surements are relevant in stochastic approach to quantum me-

chanics [13], in which random scattering on the measuring

device, that is realized as a set of macroscopic bodies mov-

ing so as to correspond on average to that of the particle in

question, leads to the Schrodinger equation: In the form of

the Madelung’s fluid with its “quantum potential” depending

on the same wave function, the external force vector corre-

sponds to the total average acceleration of the particle, that is,

the “scattering medium” itself depends also on the own mo-

tion of the particle under measurement. One more application

of the motion-to-motion gauge helps to explain the existence

and masses of the heavy µ- and τ-mesons [14]: In the cube

cell, the same gauge regular lattice might occur if one (for the

τ) or two (for the µ) electron/positron pairs are being replaced

by the heavy mesons. These two sub-symmetries of the cube

star may form the whole regular lattice, provided these “for-

eign” entries move under the mutual acceleration in the cell

nearly identically to other electrons and positrons. This situa-

tion was found to exist only for some particular values of the

mesons’ masses, found to be close to experimental data.

We deduce therefore that the pure motion-to-motion

gauge eliminating all artificial ingredients (even free falling

bodies) and basing only on the (local) existence of top-speed

signals provides not only its own interpretation of observa-

tions, but it can predict experimental results, otherwise hid-

den. This is not surprising, since such a gauge is based solely

on the very statement of practical problems, and the attached

theoretical scheme merely prescribes appropriate notions

to address nature. Experiments, as carried out along these

lines, can give then nothing but what these notions already

imply, in accord with the viewpoint of I. Kant [15] (see also

H. Bergson [16]).
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The paper concerns a theoretical model on the transport mechanisms occurring when
the charge carriers generated during the working conditions of a fuel cell interact with
point and line defects in a real lattice of solid oxide electrolyte. The results of a model
previously published on this topic are here extended to include the tunnelling of carriers
within the stretched zone of edge dislocations. It is shown that at temperatures appro-
priately low the charge transport turns into a frictionless and diffusionless mechanism,
which prospects the chance of solid oxide fuel cells working via a superconductive
effect.

1 Introduction

The electric conductivity of ceramic electrolytes for solid ox-
ide fuel cells (SOFC) has crucial importance for the science
and technology of the next generation of electric power sour-
ces. Most of the recent literature on solid oxide electrolytes
concerns the effort to increase the ion conductivity at temper-
atures as low as possible to reduce the costs and enhance the
portability of the power cell. The efficiency of the ion and
electron transport play a key role in this respect.

In general different charge transfer mechanisms are active
during the working conditions of a fuel cell, depending on
the kind of microstructure and temperature of the electrolyte.
The ion migration in the electrolyte is consequence of the
chemical reactions at the electrodes, whose global free energy
change governs the charge flow inside the electrolyte and the
related electron flow in the external circuit of the cell. Alio-
valent and homovalent chemical doping of the oxides affects
the enthalpy of defect formation, whose kind and amount in
turn control the diffusivity of the charge carriers and thus their
conductivity. Particularly interesting are for instance multi-
ion [1] and super-ion [2] conduction mechanisms.

Yet in solid oxide electrolytes several reasons allow also
the electronic conduction; are important in this respect the
non-stoichiometric structures originated by appropriate heat
treatments and chemical doping. In general an oxygen va-
cancy acts as a charge donor, because the two electrons re-
lated to O−2 can be excited and transferred throughout the
lattice. Oxygen deficient oxides have better conductivity than
stoichiometric oxides. Typical case is that of oxygen defi-
cient oxides doped with lower valence cations, e.g. ZrO2
with Y or Ca. As a possible alternative, even oxide doping
with higher valence cations enables an increased amount of
electrons while reducing the concentration of oxygen vacan-
cies. Besides, an oxide in equilibrium with an atmosphere of
gas containing hydrogen, e.g. H2O, can dissolve neutral H
or hydride H− or proton H+; consequently the reaction of hy-
drogen and hydrogen ions dissolved in the oxide with oxygen
ions releases electrons to the lattice in addition to the proton
conduction.

Mixed ionic–electronic conductors (MIECs) concern in

general both ion, σi, and hole/electron, σel,conductivities of
the charge carriers. Usually the acronym indicates materi-
als in which σi and σel do not differ by more than 2 orders of
magnitude [3] or are not too low (e.g. σi, σel ≥ 10−5 S cm−1).
According to I. Riess [4], this definition can be extended to
intend that MIEC is a material that conducts both ionic and
electronic charges. A review of the main conduction mech-
anisms of interest for the SOFC science is reported in [5].
Anyway, regardless of the specific transport mechanism ac-
tually active in the electrolyte, during the work conditions of
the cell the concentration profiles of the charges generated by
the chemical reactions at the electrodes look like that qualita-
tively sketched in the figure 1.

It is intuitive that the concentration of each species is
maximal at the electrode where it is generated. The con-

Fig. 1: Qualitative sketch of the concentration profiles of two car-
riers with opposite charges in the electrolyte as a function of their
distance from the electrode where either of them was generated. The
profiles represent average diffusion paths, regardless of the local mi-
croscopic lattice jumps around the average paths.

60 Sebastiano Tosto. Mixed Ion-Electron Conductivity and Superconductivity in Ceramic Electrolytes



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

centration gradients are sustained by the free energy change
of the global reaction in progress; so the charges are sub-
jected to a diffusive driving force Fc and electric potential
gradient driving force Fϕ, the latter being related to the non-
uniform distribution of charges at the electrodes. In general
both forces control the dynamics of all charge carriers.

This picture is however too naive to be realistic. Dopant
induced and native defects in the lattice of the electrolyte can
interact together and merge to form more complex defects,
in particular when the former and the latter have opposite
charges, until an equilibrium concentration ratio of single to
complex defects is attained in the lattice. Moreover, in addi-
tion to the vacancies and clusters of vacancies, at least two
further crystal features are to be taken into account in a real
material: the line defects and the grain boundaries, which act
as potential barriers to be overcome in order that the ions per-
form their path between the electrodes. The former include
edge and screw dislocations that perturb the motion of the
charge carriers because of their stress field; the latter have a
very complex local configuration because of the pile up of
dislocations, which can result in a tangled dislocation struc-
ture that can even trap the incoming ions and polygonized dis-
location structure via appropriate annealing heat treatments.
For instance hydrogen trapping in tangled dislocations is re-
ported in [6]. Modelling these effects is a hard task; exists in
the literature a huge amount of microscopic [7] and macro-
scopic [8] models attempting to describe the transport mech-
anisms of the charge carriers through the electrolyte.

The former kind of models implements often quantum ap-
proaches to get detailed information on a short range scale of
phenomena; their main problem is the difficulty of theoreti-
cal approach that often requires drastic approximations, with
results hardly extrapolable to the macroscopic behaviour of a
massive body and scarcely generalizable because of assump-
tions often too specific.

The latter kind of models regards the electrolyte as a con-
tinuous medium whose properties are described by statisti-
cal parameters like temperature, diffusion coefficient, electri-
cal conductivity and so on, which average and summarize a
great variety of microscopic phenomena; they typically have
thermodynamic character that concerns by definition a whole
body of material, and just for this reason are more easily gen-
eralized to various kinds of electrolytes and transport mecha-
nisms.

A paper has been published to model realistically the elec-
trical conductivity in ceramic lattices used as electrolytes for
SOFCs [9]; the essential feature of the model was to intro-
duce the interaction between charge carriers and lattice de-
fects, in particular as concerns the presence of dislocations. It
is known that the diffusion coefficient D of ions moving in a
diffusion medium is affected not only by the intrinsic lattice
properties, e.g. crystal spacing and orientation, presence of
impurities and so on, but also by the interaction with point
and line defects. The vacancies increase the lattice jump rate

and decrease the related activation energy, thus enhancing the
diffusion coefficient; this effect is modelled by increasing pur-
posely the value of D, as the mechanism of displacement of
the charge carriers by lattice jumps is simply enhanced but re-
mains roughly the same. More complex is instead the interac-
tion with the dislocation; thinking for simplicity one edge dis-
location, for instance, the local lattice distortion due to stress
field of the extra-plane affects the path of the ions between the
electrodes depending on the orientation of the Burgers vector
with respect to the applied electric field. Apart from the grain
boundaries, where several dislocations pile up after having
moved through the core grain along preferential crystal slip
planes, the problem of the line defects deserves a simulation
model that extends some relevant concepts of the dislocation
science: are known in solid state physics phenomena like dis-
location climb and jog, polygonization structures and so on.

From a theoretical point of view, the problem of ion dif-
fusion in real lattices is so complex that simplifying assump-
tions are necessary. The most typical one introduces a homo-
geneous and isotropic ceramic lattice at constant and uniform
temperature T ; in this way D is given by a unique scalar value
instead of a tensor matrix. Also, the dependence of D and re-
lated conductivity σ upon T are described regardless of their
microscopic correlation to the microstructure, e.g. orienta-
tion and spacing of the crystal planes with respect to the av-
erage direction of drift speed of the charge carriers. Since the
present paper represents an extension of the previous results,
a short reminder of [9] is useful at this point. The starting
points were the mass flow equations

J = −D∇c = cv : (1)

the first equality is a phenomenological law that introduces
the proportionality factor D, the latter is instead a definition
consistent with the physical dimensions of matter flow i.e.
mass/(sur f ace × time). The second Fick law is straightfor-
ward consequence of the first one under the additional conti-
nuity condition, i.e. the absence of mass sinks or sources in
the diffusion medium. Strictly speaking one should replace
the concentration with the activity, yet for simplicity the sym-
bol of concentration will be used in the following. The model
focuses on a solid lattice of ceramic electrolyte, assumed for
simplicity homogeneous and isotropic, where charge carriers
are allowed to travel under concentration gradient and electric
potential field. It is interesting in this respect the well known
Nernst-Einstein equation linking σ to D/kBT , which has gen-
eral valence being inferred through elementary and straight-
forward thermodynamic considerations shortly commented
below; so, in the case of mixed electronic-ionic conduction, it
holds for ions and expectedly for electrons too, being in effect
direct consequence of the Ohm law. Is known the dependence
of D on T ; the Arrhenius-like form D = D0 exp(−∆G/kT )
via the activation free energy ∆G is due not only to the direct
T -dependence of the frequency of lattice jumps inherent D0,
but also to the fact that the temperature controls the amount
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and kind of point defects that affect ∆G. The Nernst-Einstein
equation has conceptual and practical importance, as it allows
calculating how the electrolytes of SOFCs conduct at differ-
ent temperatures; yet it also stimulates further considerations
about the chance of describing the interactions of charges in a
crystal lattice via the concept of “effective mass” and the con-
cept of diffusion coefficient in agreement with the Fick laws.
This point is shortly highlighted as follows.

It is known that the effective mass meff of an electron with
energy E moving in a crystal lattice is defined by meff =

ℏ2
(
∂2E(k)/∂k2

)−1
, being k = 2π/λ and λ the wavelength of

its De Broglie momentum p = h/λ = ℏk. The reason of
this position is shortly justified considering the classical en-
ergy E = p2/2m + U, which reads E = ℏ2k2/2m + U from
the quantum standpoint; U = U(k) is the electron interac-
tion potential with the lattice. If in particular U = 0, then
meff coincides with the ordinary free electron rest mass m.
Instead the interacting electron is described by an effective
mass meff , m; putting U = ℏ2u(k)/m and replacing in E,
one finds instead meff = m(1 + ∂2u/∂k2)−1. In fact the de-
viation of meff from m measures the interaction strength of
the electron with the lattice; it is also known that by intro-
ducing the effective mass, the electron can be regarded as a
free particle with good approximation. Owing to the physical
dimensions length2 × time−1 of ℏ/m, the same as the diffu-
sion coefficient, it is formally possible to put D = ℏqm/m and
Deff = ℏqmeff/meff via appropriate coefficients qm and qeff

m able
to fit the experimental values of D and Deff .

Rewrite thus meff/m as

Deff

D∗
= 1 +

∂2u
∂k2 D =

ℏqm

m
D∗ = qD q =

qmeff

qm
, (2)

which calculate D∗ and thus Deff as a function of the physical
D actually measurable. So, once taking into account the in-
teraction of the electron with the lattice, one could think that
the real and effective electron masses correspond to the actual
D and effective Deff related to its interaction with the electric
field and lattice. Note that the first eq (2) reads

Deff = D∗ + D§ D§ = D∗
∂2u(k)
∂k2 . (3)

Clearly the contribution of D§ to the actual diffusion coef-
ficient Deff is due to the kind and strength of interaction of
the charge carrier with the lattice; thus Deff , and not the plain
D, has physical valence to determine the electrical conduc-
tivity of the electrolyte during the operation conditions of the
cell: the electron in the lattice is not a bare free particle, but a
quasi-particle upon which depends in particular its conductiv-
ity. It is known indeed that electrons in a conductor should be
uniformly accelerated by an applied electric field, but attain
instead a steady flow rate because of their interaction with the
lattice that opposes their motion; the resistivity is due to the
electron-phonon scattering and interaction with lattice ions,

impurities and defects, thermal vibrations. Any change of
these mechanisms affects the resistivity; as a limit case, even
the superconducting state with null resistivity is due itself to
the formation of Cooper pairs mediated just by the interaction
between electrons and lattice. Write thus the Nernst-Einstein
equation as follows

σeff =
1
ρeff =

(ze)2cDeff

kBT
. (4)

The crucial conclusion is that all this holds in principle
for any charge carrier, whatever U and m might be. To un-
derstand this point, suppose that the interaction potential U
depends on some parameter, e.g. the temperature, such that
u = u(k,T ) verifies the condition lim

T→Tc
∂2u/∂k2 = ∞ at a crit-

ical temperature T = Tc. Nothing excludes “a priori” such
a chance, as this condition does not put any physical con-
strain on the macroscopic value of the diffusion coefficient D
nor on the related D∗: likewise as this latter is simply D af-
fected by the applied electric field via the finite factor q, the
same holds for Deff affected by the lattice interaction upon
which depends meff as shown in the eq (2). Thus the limit
lim

T→Tc
(Deff/D) = ∞ concerns D§ only. Being qm > 0 and

qeff
m > 0 but anyway finite, the divergent limit is not unphysi-

cal, it merely means that at T = Tc the related carrier/lattice
interaction implies a new non-diffusive transport mechanism;
this holds regardless of the actual value of D, which still rep-
resents the usual diffusion coefficient in the case of carriers
ideally free or weakly interacting with the lattice in a differ-
ent way, e.g. via vacancies only. In conclusion are possible
two diverse consequences of the charge carrier/lattice defect
interactions: one where D§ , D, i.e. the presence of de-
fects simply modifies the diffusion coefficient, another one
where the usual high temperature diffusive mechanism is re-
placed by a different non-diffusive mechanism characterized
by D§ → ∞, to which corresponds ρeff → 0 at T = Tc. Two
essential remarks in this respect, which motivate the present
paper, concern:

(i) The quantum origin of both eqs (1) is inferred in [10];
this paper infers both equations as corollaries of the statis-
tical formulation of quantum uncertainty. Has been contex-
tually inferred also the statistical definition of entropy S =
−∑ jπ j log(π j) in a very general way, i.e. without hypothe-
ses about the possible gaseous, liquid or solid phase of the
diffusion medium. It has been shown that the driving force
of diffusion is related to the tendency of a thermodynamic
system in non-equilibrium state because of the concentration
gradients towards the equilibrium corresponding to the max-
imum entropy, whence the link between diffusion propensity
and entropy increase.

(ii) The result Deff = D§ +D∗, actually inferred in [9]: the
interaction of the charge carrier with the stress field of one
edge dislocation defines an effective diffusion coefficient Deff

consisting of two terms, D∗ related to its interaction with the
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electric potential of the cell and D§ related to its chemical gra-
dient and interaction with the stress field of the dislocation.

The concept of Deff is further concerned in the next sec-
tion to emphasize that the early ideas of Fick mass flow,
which becomes now effective mass flow, and Einstein Deff-
dependent conductivity are extendible to and thus still com-
patible with the limit case D§ → ∞.

In summary Did → D → D∗ → Deff are the possible
diffusion coefficients of each charge carrier concerned in [9]:
Did is that in an ideal defect free lattice, D that in a lattice
with point defects only, D∗ in the given lattice with an ap-
plied electric potential, Deff in a real lattice with dislocations
under an applied electric potential. The chance of extrapolat-
ing the equation (4) to the superconducting state, despite this
latter has seemingly nothing to do with the diffusion driven
charge displacement, relies on two logical steps.
The first step is to acknowledge that Deff = D§ + D is re-
quired by the presence of dislocations, because Deff cannot
be defined simply altering the value of the plain D; the reason
of it has been explained in [9] and is also summarized in the
next section for clarity.

To elucidate the second step, consider preliminarily D→
Deff simply because D§ ≫ D: in this case the finite con-
tribution D§ due to the charge/dislocation interaction can be
accepted without further problems.

Suppose that a valid physical reason allows a charge car-
rier to move as a free particle in the lattice, regardless of the
concentration gradient or applied potential difference or force
F of any physical nature; in this extreme case, the condition
ρeff → 0 necessarily results by consequence and requires it-
self straightforwardly D§ → ∞ in the Nernst-Einstein equa-
tion. In other words, the second step to acknowledge the
divergent value of D§ is to identify the peculiar interaction
mechanism such that the charge carrier behaves effectively
in the lattice as a free particle at a critical temperature Tc:
the existence of such a mechanism plainly extrapolates to the
superconducting state the eq (4), which is thus generalized
despite the link between σ and D is usually associated to a
diffusive mechanism only.

The present paper aims to show that thanks to the fact of
having introduced both point and line lattice defects in the
diffusion problem, the previous model can be effectively ex-
tended to describe even the ion superconducting state in ce-
ramic electrolytes. It is easy at this point to outline the or-
ganization of the present paper: the section 2 shortly sum-
marizes the results exposed in [9], in order to make the ex-
position clearer and self-contained; the sections 3 and 4 con-
cern the further elaboration of these early results according
to the classical formalism. Eventually the section 5 reviews
from the quantum standpoint the concepts elaborated in sec-
tion 4. Thus the first part of the paper concerns in particular
the usual mechanism of charge transport via ion carriers, next
the results are extended to the possible superconductivity ef-
fect described in the section 5. A preliminary simulation test

in the section 5.1 will show that the numerical results of the
model in the particular case where the charge carrier is just
the electron match well the concepts of the standard theory of
superconductivity.

2 Physical background of the model

The model [9] assumes a homogeneous and isotropic elec-
trolyte of ceramic matter at uniform and constant temperature
everywhere; so any amount function of temperature can be re-
garded as a constant. The electrolyte is a parallelepiped, the
electrodes are two layers deposited on two opposite surfaces
of the parallelepiped. The following considerations hold for
all charge carriers; for simplicity of notation, the subscript i
that numbers the i-th species will be omitted. Some remarks,
although well known, are shortly quoted here because use-
ful to expose the next considerations in a self-contained way.
Merging the flux definition J = cv and the assumption J =
−D∇c about the mass flux yields v = −D∇ log(c). Introduce
then the definition v = βF of mobility β of the charge carrier
moving by effect of the force F acting on it; one infers both
D = kBTβ and F = −∇µ together with µ = −kBT log(c/co).
An expression useful later is

F =
kBT
D

v =
kBT
Dc

J. (5)

So the force is expressed through the gradient of the potential
energy µ, the well known chemical potential of the charge
carrier. The arbitrary constant co is usually defined as that of
equilibrium; when c is uniform everywhere in the diffusion
medium, the driving force of diffusion vanishes and the Fick
law predicts a null flow of matter, which is consistent with
c ≡ co. Another important equation is straightforward conse-
quence of the link between mass flow and charge flow; since
the former is proportional to the number of charged carriers,
each one of which has charge ze, one concludes that Jch = zeJ
and so βch = zeβ. Let the resistivity ρ be summarized macro-
scopically by Ohm’s law ρJch = −∇ϕ = E; i.e. the charge
carrier interacts with the lattice while moving by effect of the
applied electric potential ϕ and electric field E. The crucial
eq (4) is inferred simply collecting together all statements just
introduced in the following chain of equalities

Jch = σE = zecv = zecβchE =

= (ze)2cβE =
(ze)2EcD

kBT
= −cDze∇ϕ

kBT
. (6)

Moreover the effect of an electric field on the charge car-
riers moving in the electrolyte is calculated through the last
sequence of equalities recalling that the electric and chemical
forces are additive. Consider thus the identity

Ftot = −∇µ − αze∇ϕ = −kBT
c

(
∇c + α

zec∇ϕ
kBT

)
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where α is the so called self-correlation coefficient ranging
between 0.5 to 1; although usually taken equal to 1 and omit-
ted [11], it is quoted here by completeness only. Recalling
the mobility equation kBT/c = D/βc and noting that Fβc is
just a mass flow, the result is

Jtot = −D
(
∇c + α

zec
kBT
∇ϕ

)
=

cD
kBT

(∇µ − αze∇ϕ) . (7)

So far D has been introduced without mentioning the dif-
fusion medium, in particular as concerns its temperature and
the presence of lattice defects of the ceramic crystal. As the
point defects simply increase the frequency of lattice jumps
[12] and thus the value of the diffusion coefficient, in these
equations D is assumed to be just that already accounting for
the vacancy driven enhancement. As concerns the presence of
edge and screw dislocations also existing in any real crystal,
the paper [9] has shown that in fact the dislocations modify
significantly the diffusion mechanism in the electrolyte: their
stress field hinders or promotes the charge transfer by creating
preferential paths depending on the orientation of the disloca-
tion stress field with respect to the electrode planes. In par-
ticular the dislocation affects the mobility of the charge carri-
ers, as it is intuitive to expect: phenomena like the climbing,
for instance, occur when a dislocation or isolated atoms/ions
move perpendicularly to the extra plane of another disloca-
tion to overcome the compression field due to the local lattice
distortion. Moreover, in the case of edge dislocations the fig-
ure 2 shows the possibility of confinement of light atoms, e.g.
typically C and N, along specific lattice directions perpendic-
ular to the Burgers vector; this emphasizes the importance of
the orientation of grains and dislocations with respect to the
average path of the charges between the electrodes.

Assume first one lonely dislocation in a single crystal lat-
tice; this case allows a preliminary assessment of the interac-
tion between charge carriers travelling the lattice in the pres-
ence of an applied potential field. In the case of edge disloca-
tion the shear stress component on a plane at distance y above
the slip plane is known to be σxy = [8πy(1 − ν)]−1Gb sin(4θ),
being ν the Poisson modulus, G the shear modulus, b = |b|
and b the Burgers vector, θ is the lattice distortion angle in-
duce by the extra plane on the neighbour crystal planes [13].
Moreover the modulus of the force per unit length of such
dislocation is F(d) = bσxy, where the superscript stands for
dislocation. Hence, calling l(d) the length of the extra plane,
the force field due to one dislocation is

F(d) = [8πy(1 − ν)]−1Gb2l(d) sin(4θ)ub

where ub is a unit vector oriented along the Burger vector, i.e.
normally to the dislocation extra plane. It is known that atom
exchange is allowed between dislocations; the flow J of these
atoms within a lattice volumeΩ is reported in the literature to
be

J = DL∇µ/(ΩkBT ) µ = −kT log(cΩ),

being µ the chemical potential and DL the appropriate diffu-
sion coefficient; for clarity are kept here the same notations
of the original reference source [14]. Actually this flow is
straightforward consequence of the Fick law, as it appears
noting that the mass mΩ of atoms within the volume Ω of
lattice corresponds by definition to the average concentration
cΩ = mΩ/Ω; so the atom flow between dislocations at a mu-
tual distance consistent with the given Ω is nothing else but
the diffusion law JΩ = −DL∇cΩ itself, as it is shown by the
following steps

JΩ = −DL∇cΩ = −cΩDL∇ log(cΩ)

=
cΩDL

kBT
∇µ = mΩ

Ω

DL

kBT
∇µ.

(8)

Thus the flow J = JΩ/mΩ reported in the literature de-
scribes the number of atoms corresponding to the pertinent
diffusing mass. The key point of the reasoning is the appro-
priate definition of the diffusion coefficient DL, which here
is that of a cluster of atoms of total mass mΩ rather than
that of one atom in a given matrix. Once having introduced
F(d), it is easy to calculate how the flow of the charge carri-
ers is influenced by this force field via the related quantities
D(d) = kBTβ(d) and v(d) = β(d)F(d); in metals, for instance,
it is known that the typical interaction range of a disloca-
tion is of the order of 10−4 cm [13]. The contribution of
this exchange to the charge flow is reasonably described by
J(d) = F(d)D(d)c/kBT according to the eq (5). Consider now
F(d) as the average field due to several dislocations, while the
same holds for β(d) and D(d), which are therefore related to
the pertinent σ(d); omitting the superscript to simplify the no-
tation, eq (7) reads thus

Jtot = −D
(
∇c + α

zec
kBT
∇ϕ − cF

kBT

)
F =< F(d)(G, ν, l(d),b) > . (9)

In this equation D has the usual statistical meaning in a
real crystal lattice and includes the electric potential as well.
Here the superscript has been omitted because also F denotes
the statistical average of all the microscopic stress fields F(d)

existing in the crystal. One finds thus with the help of the
continuity condition

∇·
[
D

(
∇c + α

zec
kBT
∇ϕ − cF

kBT

)]
=
∂c
∂t

D = D(T, c, t) (10)

where c and v are the resulting concentration and drift veloc-
ity of the i-th charge carrier in the electrolyte. In general the
diffusion coefficient depends on the local chemical composi-
tion and microstructure of the diffusion medium. Moreover
the presence of F into the general diffusion equation is re-
quired to complete the description of the charge drift through
a real ceramic lattice by introducing a generalized thermody-
namic force, justified from a microscopic point of view and
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thus to be regarded also as a statistical macroscopic param-
eter. This force, considered here as the average stress field
resulting from the particular distribution of dislocation arrays
in the lattice, accounts for the interaction of a charge carrier
with the actual configuration of lattice defects and is expected
to induce three main effects: (i) to modify the local velocity
v of the charge carrier, (ii) to modify the local concentration
of the carriers (recall for instance the “Cottrel atmospheres”
that decorate the dislocation), (iii) to modify the local electric
potential because altering the concentration of charged parti-
cles certainly modifies the local ϕ. Accordingly, considering
again the average effects of several dislocations in a macro-
scopic crystal, it is reasonable to write

cF
kBT

=
mcv̇
kBT
+ a∇c + Γ

v̇ = v̇(c) Γ = Γ(c, ϕo) c = c(x, y, z, t,T )

being a a proportionality constant. The first addend at right
hand side accounts for the effect (i), the second for the ef-
fect (ii), the vector Γ for the effect (iii) because it introduces
the local potential ϕo due to the charges piled up around the
dislocation; the dependence of these quantities on c of the
pertinent carrier emphasizes the local character of the respec-
tive quantities depending on the time and space coordinates.
The final step is to guess the form of Γ in order to introduce
in the last equation the electrochemical potential αϕ + µ/ze
inferred from the eq (7) . As motivated in [9], Γ is defined
as a local correction of ϕ because of the concentration of the
charge carriers; with the positions

Γ =
cα

kBT
∇ (zeϕ + µ) − zeϕoα

kBT
∇c a = 1 − α

eq (10) turns into

∇ ·
[

mv
kBT

∂(cD)
∂t
+

zeϕoα

kBT
D∇c

]
=
∂C
∂t

(11)

where

C = c +
m

kBT
∇ · (cDv) ϕo = ϕo(x, y, z, t).

The function ϕo has physical dimensions of electric po-
tential. Eventually, owing to this definition of C, the last
equation reads

∇ ·
[
(D∗ + D§)∇C

]
=
∂C
∂t

(12)

being

D∗ =
zeϕo

kBT
αD

m
kBT

∂(cD)
∂t

v = D∗∇(C − c) + D§∇C.

These considerations show that it is possible to define an ef-
fective diffusion coefficient in the presence of an applied po-
tential ϕ and taking into account the presence of point and
line defects

Deff = D∗ + D§. (13)

This equation is equal to that inferred via the effective mass
of the charge carrier interacting with the lattice, see the eq
(3); D§ is defined by the last eq (12) accounting via C for
the presence of dislocations in a real ceramic electrolyte. Ac-
cordingly, the equation (13) is modified as follows

Deff

D
= α

zeϕo

kBT
+

D§

D
σeff =

1
ρeff =

Deff

D
σ. (14)

The solution of the eq (10) via the eq (12) to find the an-
alytical form of the space and time profile of c is described
in [9]; it is not repeated here because inessential for the pur-
poses of the present paper. Have instead greater importance
the result (13) and the following equations inferred from the
eqs (11) and (12)

∇ · (cDv) = 0, C ≡ c, v =
kBT
m

D§

∂(cD)/∂t
∇c. (15)

The consistency of the first equation with the eq (12) has
been therein shown. This condition requires that the vector
cDv, having physical dimensions of energy per unit surface,
is solenoidal i.e. the net flow of carriers crossing the volume
enclosed by any surface is globally null; this holds for all car-
riers and means absence of source or sinks of carriers around
any closed surface. Note that this condition is fulfilled by

v =
B

cD
(16)

with

B = iBx(y, z, t) + jBy(x, z, t) + kBz(x, y, t) |B| → energy
sur f ace

.

The vector B is defined by arbitrary functions whose ar-
guments depend on the coordinate variables as shown here:
at any time and local coordinates the functions expressing the
components of B can be appropriately determined in order to
fit the corresponding values of vcD resulting from the solu-
tion of the eq (10). Hence the positions (15) do not conflict
with this solution, whatever the analytical form of v and c
might be; the third equality (15) defines D§ = D§(c,D, v,T ).
The central result to be implemented in the present model is

v =
kBT
η

D§
∇c
m
= ΩD§∇n (17)

where

η =
∂(cD)
∂t

n =
c
m

Ω =
kBT
η

with n numerical density of the given carrier and η energy
density corresponding to the time change of cD; the volume
Ω results justified by dimensional reasons and agrees with the
fact that the diffusion process is thermally activated. More-
over one finds

v =
B

cD
=
Ω

m
D§∇c = D§

∇c
c

m = cΩ. (18)
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Owing to the importance of the third eq (15) for the pur-
poses of the present paper, it appears useful to verify its va-
lidity; this check is shortly sketched below by demonstrating
its consistency with relevant literature results.

First of all, the eq (17) leads itself to the literature re-
sult (8); the key points are the definition of mobility β and
its relationship to the diffusion coefficient β = D/kT previ-
ously reported in the eq (5). Let the atom exchange between
dislocations be thermally activated, so that holds the last eq
(17). Being v = D§∇µ/kBT according to the eq (18), then
DLF/kBT = −D§∇µ/kBT specifies DL ≡ D§, i.e. the dif-
fusion coefficient is that pertinent to the interaction of atoms
with the concerned dislocations; moreover the force F ≡ −∇µ
acting on the atoms corresponds to the change of chemical po-
tential related to the migration of the atoms themselves. Since
these relationships are directly involved in the Fick equation
inferred in section 1, it follows that the eq (15) fits well the
model of concentration gradient driven diffusion process.

Furthermore let us show that eq (15) implies the link be-
tween ∇µ and the stress τ that tends to move preferentially
dislocations with Burgers vector favourably oriented in a
crystal matrix, e.g. perpendicularly to a tilt boundary plane
[14]; this stress produces thus a chemical potential gradi-
ent between adjacent dislocations having non-perpendicular
component of the Burgers vector. Once more D to be im-
plemented here is just the diffusion coefficient D§ pertinent
to the interaction with the dislocation and thus appropriate to
this specific task. Assuming again kBT/η ≈ Ω, then F = −∇µ
yields FΩ = −(kBT/η)∇µ. If two dislocations are at a dis-
tance d apart, then Ω = Ad/2 for each dislocation, being A
the surface defined by the length L of the dislocations and the
height of their extra-planes; so Ad is the total volume of ma-
trix enclosed by them, whereas Ad/2 is the average volume
defined by either extra-plane and its average distance from an
equidistant atom, assumed d/2 apart from each dislocation.
Being 2FΩ/(Ad) = −∇µ, the conclusion is that 2τΩ/d = −∇µ
with τ = F/A, which is indeed the result reported in [14].

Finally let us calculate with the help of the eq (15) also
the atom flux I = AJ/m between dislocations per length of
boun-dary of cross section A in direction parallel to the tilt
axis. The following chain of equations

I = −ADL∇c
m

= −ADL∇c
cΩ

= −ADL∇ log(c)
Ω

=

=
DLA∇µ
kBTΩ

= −2DLF
kBTd

= −2DLLτ
kBT

τ =
F
Ld

yields the literature result −2DLτ/kT per unit length of dislo-
cation [14].

All considerations carried out from now on are self-
contained whatever the analytical form of c might be. In the
following the working temperature T of the cell is always re-
garded as a constant throughout the electrolyte.

Fig. 2: A: Cross section of the stretched zone of an edge dislocation
at the interface between the lower boundary of the extra plane and
the perfect lattice. B: Equilibrium position of an atom, typically
carbon or nitrogen, in the stretched zone after stress ageing.

3 Outline of the charge transport model

In general, the macroscopic charge flow within the electrolyte
of a SOFC cell is statistically represented by average concen-
tration profiles of all charges that migrate between the elec-
trodes. The profiles of the ions during the working condition
of the cell, qualitatively sketched in the fig. 1, are in effect
well reproduced by that calculated solving the diffusion equa-
tion (12) [9]. The local steps of these paths consist actually
of random lattice jumps dependent on orientation, structure
and possible point and line defects of the crystal grains form-
ing the electrolyte, of course under the condition that the dis-
placement of the charge carriers must be anyway consistent
with the overall formation of neutral reaction products. So v
and∇n of the eqs (17) are average vectors that consist actually
of local jumps dependent on how the charge carriers interact
each other and with lattice defects, grain boundaries and so
on. The interaction of low sized light atoms and ions with
the lattice distortion due to the extra plane of a dislocation
has been concerned in several papers, e.g. [15]: the figure
2A shows the cross section of the stretched zone of an edge
dislocation, the fig. 2B the location of a carbon atom in the
typical configuration of the Cottrell atmosphere after strain
ageing of bake hardenable steels. The segregation of N and
C atoms, typically interstitials, on dislocations to form Cot-
trell atmospheres is a well known effect; it is also known that
after forming these atmospheres, energy is required to unpin
the dislocations: Luders bands and strain ageing are macro-
scopic evidences of the pinning/unpinning instability. These
processes are usually activated by temperature and mechani-
cal stresses.

Of course the stress induced redistribution and ordering of
carbon atoms has 3D character and has been experimentally

66 Sebastiano Tosto. Mixed Ion-Electron Conductivity and Superconductivity in Ceramic Electrolytes



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

Fig. 3: 3D representation of the static Cottrell configuration of sev-
eral carbon atoms after interaction with the stress field of an edge
dislocation. B: dynamical flow of charge carriers that tunnel along
the length of the extra plane of the dislocation.

verified in ultra low carbon steels; the configuration reported
in the literature and redrawn in fig 3A explains the return to
the sharp yield point of the stress-strain curve of iron [16].

The chance that light atoms line up into the strained zone
of an edge dislocation is interesting for its implications in the
case of mixed conductivity in ceramic electrolytes. It is rea-
sonable to guess that the aligned configuration sketched in
fig. 3A is in principle also compatible with the path of mo-
bile charge carriers displacing along this transit trail, as repre-
sented in the fig. 3B. Among all possible paths, the next sec-
tion concerns in particular the conduction mechanism that oc-
curs when low atomic number ions tunnel along the stretched
zone at the interface between the extra-plane of an edge dis-
location and the underlying perfect lattice. The mechanism
related to this specific configuration of charges involves di-
rectly the interaction of the carriers with the dislocation and
thus is described by the eq (15), which indeed depends explic-
itly upon D§. From a classical point of view, is conceivable
in principle an ideal fuel cell whose electrolyte is a ceramic
single crystal with one edge dislocation spanning the entire
distance between the electrodes; in this particular case, there-
fore, is physically admissible a double conduction mecha-
nism based on the standard diffusive process introduced in [9]
plus that of ion tunnelling throughout the whole electrolyte
size. Regarding the tunnel path and the whole lattice path as
two parallel resistances, the Kirchhoff laws indicate how the
current of charge carriers generated at the electrodes shunts
between either of them. This is schematically sketched in the
figure 4.

The tunnel mechanism appears reasonable in this context
considering the estimated electron and proton classical radii,
both of the order of 10−15 m, in comparison with the lattice

Fig. 4: Shunt effect of charge carriers between dislocation path and
lattice path of different resistivity. On the left is sketched the pos-
sible path within and in proximity of the stretched zone of an edge
dislocation; on the right is shown the corresponding electric circuit
of the currents crossing the electrolyte.

spacing, of the order of some 10−10 m. A short digression
about the atom and ion sizes with respect to the crystal cell
parameter deserves attention. Despite neither atoms nor ions
have definite sizes because of their electron clouds lack sharp
boundaries, their size estimate allowed by the rigid sphere
model is useful for comparison purposes; as indeed the Cot-
trel atmospheres of C and N atoms have been experimentally
verified, the sketch of the fig. 3A suggests by size comparison
a qualitative evaluation about the chance of an analogous be-
haviour of ions of interest for the fuel cells. The atomic radius
is known to be in general about 104 times that of the nucleus,
the radii of low atomic number elements typically fall in the
range 1÷100 pm [17]. Specifically, the covalent values for C,
N and O atoms are 70, 65 and 60 pm respectively; it is known
that they decrease across a period. The ionic radii of low
atomic number elements are typically of the order of 100 pm
[18]; they are estimated to be 0.1 and 0.14 nm for Na+ and
O=. It is known that the average lattice parameters of solid
oxides increase about linearly with cationic radii [19]; typi-
cal values of lattice average spacing are of the order of 0.5-0.6
nm. As the stretched zone of a dislocation has size necessarily
greater than the unstrained spacing, one reasonably concludes
that, at least in principle, not only the proton and nitrogen
and carbon atoms but even oxygen ions have sizes compatible
with the chance of being accommodated in the stretched zone
underlying the dislocation extra-plane. These estimates sug-
gest by consequence that even low atomic number ion con-
duction via channelling mechanism along the stretched zone
of the dislocation is reasonably possible. It is known that pro-
ton conducting fuel cells typically work with protons crossing
of polymer membranes from anode to cathode, whereas in-
SOFCs oxygen ions migrate through the ceramic electrolyte
from cathode to anode; yet the tunnelling mechanism seems
in principle consistent with both kinds of charge carriers in
typical SOFC electrolytes.
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Consider now the case where the driving energy of the
segregation process of atoms to dislocations is not only the
lattice strain of the ceramic electrolyte but, during the work-
ing cycle of a fuel cell, also the free energy that generates
ions at the electrodes and compels them migrating by effect of
the electric potential; the alignment of several ions confined
along the dislocation length sketched in fig. 3A has thus a
dynamical valence, i.e. it suggests the specific displacement
mechanism that involves the tunnelling of ions throughout the
stretched zone of an edge dislocation at its boundary with the
perfect lattice. In other words, one can think that the line of
foreign light ions along this zone is also compatible with the
particular migration path of such ions generated at either elec-
trode; certainly the proton is a reasonable example of carrier
compliant with such particular charge transport mechanism,
as qualitatively sketched in fig. 3B. These considerations ex-
plain the difference between D, the usual diffusion coefficient
of a given ion in a given lattice with or without point defects,
and Deff , which in this case is the effective diffusion coef-
ficient of the same ion that moves confined in the stretched
zone of the dislocation. This conclusion agrees with and con-
firms the idea that the electric conductivity is related to Deff

and not to D, because the former only accounts for this par-
ticular kind of interaction between charge carrier and dislo-
cation. Also, just for this reason in the fig. 4 the resistivity
of ions with different kind of interaction with the dislocation,
i.e. inside it along the stretched zone and outside it in the
lattice compression zone, have been labelled respectively ρeff

1
and ρeff

2 . Despite Deff is related generically to any interaction
mechanism possible when charge carriers move in the pres-
ence of dislocations, it will be regarded in the following with
particular reference to the charge tunnelling mechanism just
introduced.

4 Classical approach to elaborate the early results [9]

The experimental situation described in this section, in princi-
ple possible, is the one of a unique edge dislocation crossing
throughout the single crystal ceramic electrolyte and arbitrar-
ily inclined with respect to plane parallel electrodes. The fol-
lowing discussion concerns the eq (17) and consists of two
parts: the first part has general character, i.e. it holds at any
point of the ceramic lattice, in which case the presence of the
dislocation merely provides a reference direction to define
specific components of v; the second part aims to describe
the particular mechanism of transport of charges that tunnel
along the stretched zone of the dislocation, which in fact is
the specific case of major interest for the present model.

4.1 Charge transport in the electrolyte lattice

Regard in general the drift velocity v of a charge carrier as
due to a component v∥ parallel to the tunnelling direction and
a component v⊥ perpendicular to v∥; so the eq (17) yields

v = v∥ + v⊥ v∥η = kBT D§∥∇n ± η′va (19)

v⊥η = kBT D§⊥∇n ∓ η′va D§∥ + D§⊥ = D§

where η′ has physical dimensions of energy per unit volume
and va is an arbitrary velocity vector: with the given signs,
the third equation is fulfilled whatever va and η′ might be. Of
course the components of v are linked by

v =
√

v2
∥ + v2

⊥ v⊥ =
(
u∥ −

uo

uo · u∥

)
v∥ u∥ =

v∥
v∥

(20)

with v = |v| given by the solution of the set (12) of diffusion
equations; the same notation holds for the moduli v∥ and v⊥.
The arbitrary unit vector uo is determined in order to satisfy
the first equation; trivial manipulations yield indeed

v =
v∥

cosφ
v2
⊥ = v2

∥

(
1

cos2φ
− 1

)
uo · u∥ = cosφ, (21)

which fits v2 via an appropriate value of cosφ. Moreover the
eq (17) yields

v∥ = ΩD§u∥ · ∇n, (22)

which in principle is fulfilled by an appropriate value of Ω
whatever the actual orientation of uo and related value of
cosφ in the eqs (21) might be. Consider now that also the
thermal energy kBT = mv2

T/2 contributes to the velocity of
the carriers crossing the electrolyte, and thus must someway
appear in the model; vT defined in this way is the average
modulus of the velocity vector vT , whose orientation is by
definition arbitrary and random. During the working condi-
tions of the cell it is reasonable to expect that the actual dy-
namics of charge transport is described combining vT , due to
the heat energy of the carrier in the electrolyte, with v, due to
its electric and concentration gradient driving forces. Let us
exploit va of the eqs (19) to introduce into the problem just
the vector vT of the carriers; hence

v∥ =
D§∥
D§

v± η
′

η
vT v⊥ =

D§⊥
D§

v∓ η
′

η
vT va ≡ vT . (23)

These equations express the components of v along the
tunnel direction and perpendicularly to it. Of course v is the
actual velocity of the charge carrier resulting from the solu-
tion of the eq (12), v∥ and v⊥ are the components of v affected
by the thermal perturbation consequently to either sign of vT ;
the notations v±∥ and v∓⊥, in principle more appropriate, are
implied and omitted for simplicity. So in general

v∥ = r∥v±rvT v⊥ = r⊥v∓rvT r =
η′

η
r∥ =

D§∥
D§

(24)

r⊥ =
D§⊥
D§

r∥ + r⊥ = 1.

As expected, the velocity components result given by the
respective linear combinations of v and vT . Here it is reason-
able to put r = 1 in order that v∥ → ±vT and v⊥ → ∓vT for
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v → 0; as this reasonably occurs for T → 0, it means that
both components of v tend to the respective values consistent
with the zero point energy of the charge carrier. Note in par-
ticular that the second eq (24) vT = ±(r⊥v−v⊥) yields thanks
to the eqs (21) v2

T = (r⊥v)2 + v2
⊥ − 2r⊥v · v⊥, i.e.

v2
T = r2

⊥
v2
∥

cos2φ
+ v2
∥ tan2φ − 2r⊥v2

⊥ = (25)

=

(
r2
⊥

cos2φ
+ (1 − 2r⊥)tan2φ

)
v2
∥ v · v⊥ = v2

⊥

Let us specify now the considerations hitherto carried out to
describe the behaviour of a charge carrier moving inside the
stretched zone of the dislocation; the next part of this section
concerns in particular just the charge transport via tunnelling
mechanism.

4.2 Charge transport along the stretched zone of the
dislocation

Both possible chances r∥v∥ + vT and r∥v∥ − vT of the first
equation (24) yield an average velocity vector still consistent
with the possible tunnelling of the ion. The corresponding
chances of the second equation, where instead the vector vT

sums and subtracts to r⊥v⊥, are more interesting and critical.
The components r⊥v⊥ ∓ vT of v show indeed that the ther-
mal agitation summed up to the transverse component of ion
velocity could possibly avert the tunnelling conduction mech-
anism; this linear combination implies the possibility for the
ion path to deviate from the tunnel direction and flow out-
wards the tunnel. Moreover, even the Coulomb interaction
of the carriers with the charged cores of the lattice closely
surrounding the tunnel is to be considered: as the cores are
in general electrically charged, their interaction with the flow
of mobile carriers is expectable. The second condition for a
successful tunnelling path of the carriers concerns just this in-
teraction: if for instance the charge carrier is an electron, it is
likely attracted to and thus neutralizes with the positive cores;
so the tunnel path through the whole distance L is in practice
impossible. If instead the carrier is a proton, its Coulomb re-
pulsion with the positive cores is consistent with the chance
of travelling through L and coming out from the dislocation
tunnel: in the case of a ceramic single crystal and dislocations
crossing throughout it, the charge carrier would start from one
electrode and would reach the other electrode entirely in the
confined state. This tunnel transport mechanism is coupled
with the usual lattice transport mechanism. This situation is
represented in the figure 5.

Let us analyze both effects. Let δt = L/v∥ be the time
necessary for the carrier to tunnel throughout the length L of
the stretched zone. Then, as schematically sketched in fig. 6,
all possible trajectories are included in a cone centred on the
entrance point of the carrier whose basis has maximum total
size 2δr = 2(r⊥v⊥+vT )δt.

Fig. 5: Schematic sketch of a cell where is operating the proton
conduction mechanisms.

Fig. 6: The figure shows qualitatively the effect of the thermal ve-
locity, solid arrow, on the tunnelling of a charge carrier that travels
within the stretched zone of an edge dislocation. In A the vector sum
of v∥ and vT occurs at a temperature preventing the chance for the
carrier to tunnel throughout the dislocation length; in B the reduced
value of vT at lower T allows the tunnelling effect.

As vT has by definition random orientation, here has been
considered the most unfavourable case where vT is oriented
just transversally to v∥ in assessing the actual chance of con-
finement of the carrier within the stretched zone of the dis-
location. In general the tunnel effect is expectable at tem-
peratures appropriately low only, in order that the width of
the cone basis be consistent with the average size δl of the
stretched zone: during δt the total lateral deviation 2δr of the
ion path with respect to v∥ must not exceed δl, otherwise the
ion would overflow in the surrounding lattice. In other words,
the charge effectively tunnels if v∥ is such to verify the condi-
tion (r⊥v⊥ + vT )L/v∥ ≤ δl only.
In conclusion, considering the worst case with the plus sign
where vT and r⊥v⊥ sum up correspondingly to the maximum
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deviation of the charge, it must be true that, whatever the
component v∥ of the actual ion displacement velocity might
be,

T ≤ m
2kB

(
v∥
δl
L
− r⊥v⊥

)2

kBT =
mv2

T

2
. (26)

Two interesting equations are obtained merging the gen-
eral eq (5) and the eqs (24). Specifying for instance that the
modulus of velocity is v⊥ and D is actually D§⊥, one finds
D§⊥ = v⊥kBT/F⊥; so, multiplying both sides by v⊥/D§ and
repeating identical steps also for v∥, the results are

r⊥v⊥ =
kBT

F⊥D§
v2
⊥ r∥v∥ =

kBT
F∥D§

v2
∥ . (27)

These equations introduce the confinement forces F⊥ and F∥
that constrain the carrier path within the tunnel and corre-
spond to the interaction of the charge carrier with the neigh-
bours lattice cores surrounding the stretched zone of the dis-
location. Also, as the eqs (21) yield v⊥ = ±v∥ tanφ, one finds

T ≤
mv2
∥

2kB

(
δl
L
− kBTv∥

F⊥D§
tan2φ

)2

which is more conveniently rewritten as follows

T
Tc
≤

mv2
∥

2kBTc

δlL − T
Tc

v∥
vc
w

(
δl
L

)22

(28)

F⊥D§ = vckBTc tanφ = ±wδl
L
+ . . . .

The meaning of the second equation is at the moment
merely formal, aimed to obtain an expression function of
T/Tc and v∥/vc; as concerns the third position, is attracting
the idea of writing the expression in parenthesis as a power
series expansion of δl/L truncated at the second order, in
which case the proportionality constant w defines the series
coefficient Tv∥w/(Tcvc). Note that this coefficient should ex-
pectably be of the order of the unity, in order that the series
could converge; indeed this conclusion will be verified in the
next subsection 5.2. Clearly vc is definable as the transit crit-
ical velocity of the charge carrier making equal to 1 the right
hand side of the first eq (28). Anyway both positions are ac-
ceptable because neither of them needs special hypotheses,
being mere formal ways to rewrite the initial eq (26). This
equation emphasizes that even when v⊥ = 0, i.e. in the par-
ticular case where the entrance path of the charge carrier is
exactly aligned along v∥, the mere thermal agitation must be
consistent itself with the available tunnel cross section: the
greater the latter, the higher the critical temperature below
which the tunnelling is in fact allowed to occur. This equation
links the lattice features δl and L to the operating conditions
of the cell, here represented by the ion properties m and v∥.
Hence it is reasonable to expect that vT and thus T must not
exceed a critical upper value in order to allow the tunnelling

Fig. 7: The figure highlights that the arising of a concentration gra-
dient along the tunnel is hindered by the size of the stretched zone
of the dislocation.

mechanism. If T and m, and thus vT , are such that v∥δt really
corresponds to the whole length L of the dislocation, then the
eqs (17) describe the flow of ions that effectively tunnel in the
stretched zone of the dislocation.

4.3 The superconducting charge flow

The main feature of these results is that D§ and ∇n char-
acterize the charge tunnelling path. In general the occur-
ring of concentration gradient requires by definition a volume
of electrolyte so large to allow the non-equilibrium distribu-
tion of a statistically significant number of charge carriers
unevenly distributed among the respective lattice sites. Yet
∇n , 0 is in fact inconsistent with the size of the dislocation
stretched zone here concerned; in particular, the existence of
the component u∥ ·∇n of this gradient would require a config-
uration of charges like that qualitatively sketched in fig. 7.

This chance seems however rather improbable because of
the mutual repulsion between charges of the same sign in the
small channel available below the dislocation extra plane. So
the gradient term at right hand side of the eq (22) should in-
tuitively vanish inside the tunnel. Assume thus the compo-
nent u∥ · ∇n = 0, i.e the carriers travel the stretched zone
with null gradient within the tunnel path. To better under-
stand this point, note that in the eq (22) appears the product
D§∇n; moreover, in the eqs (27) appear the products F⊥D§

and F∥D§. These results in turn suggest two chances allowed
at left hand side of eq (22):

(i) v∥ = 0, i.e. all charges are statistically at rest in the
stretched zone; the eq (22) trivially consisting of null terms at
both sides is nothing else but the particular case of the Cottrell
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atmosphere sketched in fig. 3A. The ions that decorate the
dislocation prevent the tunnelling of further ions provided by
the lattice. The charge flow in the cell is merely that described
by the usual bulk lattice ion transport under concentration and
electric potential gradients, already concerned in [9].

(ii) The left hand side of the eq (22) is non-vanishing:
v∥ , 0 reveals actual dynamics of charges transiting within
the tunnel zone. This is closely related to the previous state-
ment of the section 1 according which, for instance, a bare
electron of mass me interacting with the dislocation can be
described by a free electron of effective mass meff

e : owing to
the eqs (2), this reasoning is identically expressed in general
via Deff instead of meff of any charge carrier.

The latter case is interesting, because the finite value of
v∥ , 0 requires that D§ → ∞ in order that the undetermined
form∞×0 makes finite the corresponding limit value of D§u·
∇n. This also means that Deff = D∗ + D§ tends to infinity
as well, which compels the resistivity ρeff → 0 according
to eq (4). Moreover, for the same reason this mechanisms
implies both F⊥ → 0 and F∥ → 0 for D§ → ∞, which implies
D§⊥ → ∞ and D§∥ → ∞; this in turn means null interaction of
the charge carrier with the lattice surrounding the tunnel zone.
Hence the eqs (28) and (27) yield

T
Tc
=

mv2
∥

2kBTc

δlL − T
Tc

v∥
vc
w

(
δl
L

)22

(29)

lim
D§→∞
F⊥→0

F⊥D§

kB
= vcTc lim

D§→∞
F∥→0

F∥D§

kB
= v′cTc.

In the eqs (28) Tc and vc were in general arbitrary vari-
ables; here instead they are fixed values uniquely defined by
the limit of the second and third equations; the same holds for
v′c related to v∥. So the transport mechanism in the stretched
boundary zone of the dislocation extra plane is different from
that in other zones of the ceramic crystal: clearly the for-
mer has nothing to do with the usual charge displacement
throughout the lattice concerned by the latter. While the con-
centration gradient is no longer the driving force governing
the charge transport, F⊥ → 0 and F∥ → 0 consequently ob-
tained mean that the charge carrier moves within the tunnel as
a free particle: the lack of friction force, i.e. electrical resis-
tance, prevents dissipating their initial access energy into the
dislocation stretched zone. This appears even more evident in
the eq (5), where D ≡ D§ at T = Tc yields J , 0 compatible
with F = 0.

Simple considerations with the help of fig. 8, inferred
from the fig. 4 but containing the information ρeff → 0,
show the electric shunt between zones of different electrical
resistivity and highlight why the charge carriers tend to privi-
lege the zero resistance tunnel path: this answers the possible
question about the preferential character of this conduction
mechanism of the charge carriers. Further quantum consider-
ations are necessary to complete the picture essentially clas-

Fig. 8: Schematic sketch showing that at the ion current shunts to
the zero resistivity path inside the tunnel with electrical resistivity
ρeff = 0 rather than to any lattice path with ρeff , 0.

sical so far carried out. On the one hand the expectation of a
superconducting flow of charges cannot be certainly regarded
as an unphysical result, despite its derivation has surprisingly
the classical basis hitherto exposed. In this respect however it
is worth recalling the quantum nature of both eqs (1), which
indeed have been obtained as corollaries of the statistical for-
mulation of the quantum uncertainty [10]; the fact that the
Fick equations have been obtained themselves as corollaries
of a quantum approach to the gradient driven diffusion force,
shows that actually all results have inherently quantum phys-
ical meaning. Then, by definition, even a classical approach
inferred from these equations has intrinsic quantum founda-
tion. On the other hand, the heuristic character of this section
requires being completed with further concepts more specifi-
cally belonging to the quantum world.

5 Quantum approach

This section aims to understand why the results of the clas-
sical model of a unique dislocation crossing through one sin-
gle grain are actually extendible to a real grain with several
disconnected dislocations of different orientations and to the
grain boundaries consisting of several tangled dislocations in-
ordinately piled up at the interface with other grains.

5.1 Grain bulk superconductivity

Define δε = εtu − εla, being εtu the energy of the ion trav-
elling the tunnel along the stretched zone of the edge dislo-
cation and εla that of the ions randomly moving in the lattice
before entering the tunnel; δε represents thus the gap between
the energy of the ion in either location, which in turn suggests
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the existence of an energy gap for a charge carrier in the su-
perconducting and non-superconducting state. This conclu-
sion is confirmed below. The fact of having introduced the
tunnelling velocity components v⊥ and v∥, suggests introduc-
ing the respective components of De Broglie momentum of
the ion corresponding to εtu. Being p∥ = h/λ∥ and p⊥ = h/λ⊥
these components, then |p| = h

√
λ−2
⊥ + λ

−2
∥ in the tunnel state;

λ⊥ and λ∥ are the wavelengths corresponding to the respective
velocity components. Let us specify n⊥λ⊥ = δl and n∥λ∥ = L,
in order to describe steady waves with n⊥ and n∥ nodes along
both tunnel sizes; then, with n⊥ = 1 and n∥ = 1,

ptu = |p| = γh/δl γ =

√
1 + (δl/L)2.

Note that γ ≈ 1 approximates well ptu even if L corre-
sponds to just a few lattice sites aligned to form the extra-
plane of the edge dislocation, i.e. even in the case of an
extra-plane extent short with respect to the lattice spacing
stretched to δl: indeed (γh/δl − h/δl)/(γh/δl) ≈ (δl/L)2/2
yields γ ≈ 1 even for values L >∼ δl. Anyway with ptu = γh/δl
one finds εtu = (hγ)2/2mδl2. According to this result, the
momentum is essentially due to the small cross section of the
stretched zone that constrains the transverse velocity compo-
nent v⊥ of the ion in the tunnel with respect to that of the ion
randomly moving in the lattice; this means that remains in-
stead approximately unchanged the component v∥ of velocity
along the tunnel. Put now εla = ϑεtu, being θ an appropriate
numerical coefficient such that δε = (ϑ − 1)εtu. In princi-
ple both chances ϑ >

< 1 are possible, depending on whether
εla >

< εtu: as neither chance can be excluded “a priori” for an
ion in the two different environments, this means admitting
that in general to the unique εla in the lattice correspond two
energy levels spaced ±δε around εtu, one of which is actu-
ally empty depending on either situation energetically more
favourable. This is easily shown as the eqs (24) yield two
chances for the energy of the charge carrier in the tunnel, de-
pending on how vT combines with v∥ and v⊥. These equa-
tions yield ε2 =

(
(r∥v + vT )2 + (r⊥v − vT )2

)
m/2 and ε1 =(

(r∥v − vT )2 + (r⊥v + vT )2
)

m/2; trivial manipulations via the
eqs (21) yield thus δε = ε2 − ε1 = 2mv · vT (r∥ − r⊥) showing
indeed a gap between the levels ε2 = ε0 +mv · vT (r∥ − r⊥) and
ε1 = ε0 − mv · vT (r∥ − r⊥) with ε0 =

(
(r2
∥ + r2

⊥)v2/2 + v2
T

)
m:

this latter corresponds thus to the Fermi level between the oc-
cupied and unoccupied superconducting levels defining the
gap. As the ion dwell time δt in the tunnel is of the order of

δt =
ℏ

|δε| = 2
mδl2ℏ

|ϑ − 1| (γh)2 ,

the extent L of the extra-plane controlling the time range of
ion transit at velocity v∥ requires

L = v∥δt =
mv∥δl2

|ϑ − 1| πhγ2 .

So, supposing that ntu electrons ξ apart each other transit si-
multaneously within the tunnel,

L =
v∥ℏ
|δε| =

v∥ℏ
|ϑ − 1| εtu

L = (ntu − 1)ξ v∥ =
γh
mδl

suggest that

ξ =
v∥ℏ

(ntu − 1) |δε| =
v∥ℏ

|ϑ − 1| (ntu − 1)εtu
.

Define now the tunnel volume V available to the transit of
the ions as V = χLδl2, being χ a proportionality constant
of the order of the unity related to the actual shape of the
stretched zone; if for instance the tunnel would be simulated
by a cylinder of radius δl/2, then χ = π/4. Hence

V = χδl2v∥δt =
χ

|ϑ − 1| π
m
h

v∥δl
γ2 δl3.

Note that v∥δl has the same physical dimensions of a dif-
fusion coefficient; so it is possible to write v∥δl = ψD∥, being
ψ an appropriate proportionality constant. Moreover recall
that the diffusion coefficient has been also related in the sec-
tion 1 to h/m via a proportionality constant, once more be-
cause of dimensional reasons; so put Dm = qmh/m via the
proportionality factor qm, as done in the section 1, whereas
the subscript emphasizes that the diffusion coefficient is by
definition that related to the mass of an ion or electron tun-
nelling in the stretched zone of the dislocation. So one finds

V =
χψ

|ϑ − 1| πγ2

D∥
qmDm

δl3.

Note eventually that it is certainly possible to write V/δl3 =
θ(1 + ζ) with ζ > 1 appropriate function and θ proportional-
ity constant: indeed the tunnel can be envisaged as a series
of cells of elementary volumes L0δl2, where L0 corresponds
to the lattice spacing of atoms aligned along the dislocation
extra plane. Replacing these positions in the equation of V
one finds

D∥
qDm

= 1 + ζ q =
|ϑ − 1| θπqm

χψ
γ2.

This result compares well with the eq (2) previously ob-
tained in an independent way, simply identifying ζ =

∂2u(k)/∂k2 and all constants with q; as expected here D∥ plays
at T = Tc the role of D§ introduced in the section 1, whereas
qDm is just D∗ previously obtained as electric potential driven
enhancement of the plain diffusion coefficient D ≡ Dm. This
agreement supports the present approach. This also suggests
some more considerations about the nature of the supercon-
ducting charge wave propagating along the tunnel zone. It is
intuitive that the quantum states of the charge carriers within
the tunnel must correspond to an ordered flow of particles, all
travelling the tunnel with the same velocity v∥; any perturba-
tion of the motion of these charges would increase the total
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Coulomb energy of the flow and could even spoil the flow;
the low temperature helps in this respect. This requires in
turn a sort of coupling between the carriers, because several
fermions cannot have the same quantum state; in effect it is
known that a small contraction of positive charges of the lat-
tice cores around the transient electrons in fact couples two
electrons. Actually, in this case the contraction is that of
the lines of lattice cores delimiting the tunnel stretched by
the dislocation plane around the transient charges. In other
words, electron pairs or proton pairs travel through the tunnel
as bosons with a unique quantum state.

5.2 Computer simulation

Some estimates are also possible considering a ceramic lattice
whose average spacing is a; this is therefore also the order of
magnitude expected for the size δl >∼ a of the stretched zone.
Consider first the case where the charge carrier is an elec-
tron, which requires negatively charged ion cores delimiting
the tunnel cross section; this assumption reminds the famil-
iar case of electron super-conduction and thus helps to check
reliability and rationality of the estimates. To assess the pre-
vious results, put m = 9 × 10−28 g and consider the rea-
sonable simulation value δl = 5 × 10−8 cm, consistent with
a typical lattice spacing quoted in the section 3; one finds
v∥ ≈ 1.5× 108 cm/s with the approximation γ = 1. Moreover
putting L = 10−4 cm, i.e. considering an edge dislocation that
crosses through a test grain average size of the typical order
of 1 µm, one finds a gap δε = v∥ℏ/L = 10−3 eV between the
ion energies in the tunnel and in the lattice. Note that the
zero point energy of a free ion in such a test lattice would be
of the order of εla ≈ 3ℏ2/2ma2 ≈ 0.3 eV, quite small with
respect to the definition value 1 eV of one electron or unit
charge ion in a ceramic electrolyte of a cell operating with
1 V. To εla corresponds the zero point vibrational frequency
ν = 2εla/h, i.e. ν ≈ 2 × 1014 s−1; with such a frequency the
wavelength λ∥ = L corresponds to a total charge wave due to
Lν/v∥ electrons. So one finds ≈ 102 electrons, whose mean
mutual distance is thus 10 nm about. Eventually the critical
temperature compatible with the arising of the superconduct-
ing state given by the eq (26) is 0.02 K with v⊥ = 0 or even
smaller for v⊥ , 0. Compare now this result obtained via the
eq (26) with that obtainable directly through the eq (25)

v2
T =

(
r2
⊥

cos2φ
+ (1 − 2r⊥)tan2φ

)
v2
∥ .

Note that v2
T has a minimum as a function of r⊥. If φ = π/2

this minimum corresponds to rmin
⊥ = 1, to be rejected because

it would imply D§⊥ = D§ and D§∥ = 0. If instead φ , π/2,
then the minimum corresponds to rmin

⊥ = sin2φ, which yields
in turn v2

T = v2
∥ sin2φ; hence kBTc = mv2

T /2 yields

Tc =
m

2kB
v2
∥ sin2φ.

With v∥ = 1.5 × 108 cm/s the electron mass would yield
T = 6.2 × 106sin2φ K. Comparing with the previous result,
one infers that 10−8 >∼ sin2φ; so being sin2φ ≈ tan2φ with good
approximation, one also infers that the second position (28) is
verified with w such that Tv∥w/(Tcvc) is of the order of unity
for δl/L = 10−4, as in fact it has been anticipated in the previ-
ous subsection 4.3. Of course the actual values of these order
of magnitude estimates depend on the real microstructure of
the ceramic lattice; yet the aim of this short digression con-
cerning the electron is to emphasize that the typical properties
of the test material used for this simulation are consistent with
the known results of electron superconduction theory. The
simulation can be repeated for the proton, considering that
the proton velocity v∥ is now me/mprot times lower than be-
fore; so, despite m is mprot/me larger than before, mv2

∥ of the
eq (26) predicts a critical T smaller than that of the electron
by a factor me/mprot for r⊥v⊥ ≪ v∥δl/L.

5.3 Grain bulk and grain boundary superconductivity

As concerns the chance of superconduction in the grain bulk
with several disconnected dislocations at the grain bound-
aries, it is necessary to recall the Josephson effect concur-
rently with the presence of tangled dislocations and pile up of
dislocations. The former concerns the transfer of supercon-
ducting Cooper pairs existing at the Fermi energy via quan-
tum tunnelling through a thin thickness of insulating material:
it is known that the tunnelling current of a quasi-electron oc-
curs when the terminals of two dislocations, e.g. piled up or
tangled, are so close to allow the Josephson Effect. If some
terminals are a few nanometers apart, then superconduction
current is still allowed to occur even though the dislocation
break produces a thin layer of ceramic insulator. In other
words, the terminal of the superconducting channel of one
dislocation transfers the pair to the doorway of another dislo-
cation and so on: in this way a superconduction current can
tunnel across the whole grain. An analogous idea holds also
at the grain boundary. Of course the chance that this event
be actually allowed to occur has statistical basis: due to the
high number of dislocations that migrate and accumulate at
the grain boundaries after displacement along favourable slip
planes of the bulk crystal lattice, the condition favourable to
the Josephson Effect is effectively likely to occur. As the
same holds also within the grain bulk between two differ-
ent dislocations close enough each other, e.g. because they
glide preferentially along equal slip planes and pile up on
bulk precipitates, the conclusion is that the pair tunnelling al-
lows macroscopic superconduction even without necessarily
requiring the classical case of a unique dislocation spanning
throughout a single crystal electrolyte.

6 Discussion

It is commonly taken for granted that the way of working of
the fuel cells needs inevitably high temperatures, of the or-
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der of some hundreds C degrees, so as to promote adequately
the ion conductivity; great efforts are addressed to reduce as
much as possible this temperature, down to a few hundreds
C degrees, yet still preserving an acceptable efficiency of the
cell compatibly with the standard mechanisms of ion conduc-
tion.

The present paper proposes however a new approach to
the problem of the electric conduction in solid oxide elec-
trolytes: reducing the operating temperature of SOFCs down
to a few K degrees, in order to promote a superconducting
mechanism.

Today the superconductivity is tacitly conceived as that
of the electrons only; the present results suggest however that
at sufficiently low temperatures, even the low atomic num-
ber ions are allowed to provide an interaction free conduc-
tion thanks to their chance of tunnelling in the stretched zone
of edge dislocations. Note that although the electron and
ion superconduction occur at different temperatures, as it is
reasonable to expect, the nature of the lattice cores appears
able to filter either kind of mechanism during the working
conditions of the cell for the reasons previously remarked:
for instance positively charged cores hinder the electron su-
perconduction by attractive Coulomb effect, while promoting
instead the proton superconduction via the repulsive effect
that keeps the proton trajectory in the middle of the stretched
channel. The results obtained in this paper support reason-
ably the chance that, at least in principle, this idea is practica-
ble. Of course other problems, like for instance the catalysis
at the electrodes, should be carefully investigated at the very
low temperatures necessary to allow the ion superconduction.
However this side problem, although crucial, has been delib-
erately waived in the present paper: both because of its differ-
ent physicochemical nature and because the foremost aim of
the model was (i) to assess the chance of exploiting the super-
conductivity not only for the electric energy transmission but
also for the electric energy production and (ii) to bring this
intriguing topic of the quantum physics deeply into the heart
of the fuel cell science.

Moreover other typical topics like the penetration depth of
the magnetic field and the critical current have been skipped
because well known; the purpose of the paper was not that of
elaborating a new theory of superconductivity, but to ascer-
tain the feasibility of an ion transport mechanism able to by-
pass the difficulties of the high temperature conductivity. Two
considerations deserve attention in this respect. The first one
concerns the requirement u∥ ·∇n = 0 characterizing the super-
conductive state with D→ ∞. At first sight one could naively
think that the eq (4) should exclude a divergent diffusion coef-
ficient. Yet the implications of a mathematical formula cannot
be rejected without a good physical reason. Actually neither
the chain of equations (6) nor the eq (19) exclude D → ∞:
the former because it is enough to put the lattice-charge inter-
action force F → 0 whatever v and kBT might be, the latter
provided putting concurrently ∇ϕ = −Ee → 0. The prod-

uct∞× 0 is in principle not necessarily unphysical despite D
diverges, because this divergence is always counterbalanced
by some force or energy or concentration gradient concur-
rently tending to zero; rather it is a matter of experience to
verify whether the finite outcomes of these products, see for
instance the eqs (29), have experimental significance or not.
In this respect, however, this worth is recognized since the
times of Onnes (1913). In fact, the electron superconductiv-
ity is nothing else but a frictionless motion of charges, some-
how similar to the superfluidity. Coherently, both equations
(29) and (10) suggest simply a free charge carrier moving
without need of concentration gradient or applied potential
difference or electric field or force F of any physical nature.
The essence of the divergent diffusion coefficient is thus the
lack of interaction between lattice and charge carrier. In this
sense the Nernst-Einstein equation is fully compatible even
with De f f → ∞: in fact is hidden in this limit, and thus in the
eq (4) itself, the concept of superconductivity, regarded as a
peculiar charge transport mechanism that lacks their interac-
tions and thus does not need any activation energy or driving
force.

These results disclose new horizons of research as con-
cerns the solid oxides candidate for fuel cell electrolytes. The
choice of the best oxides and their heat treatments is today
conceived having in mind the best high temperature conduc-
tivity only. But besides this practical consideration, nothing
hinders in principle exploring the chance of a fuel cell re-
alized with MIEC solid oxides designed to optimize the ion
superconducting mechanism. The prospective is that MIECS
with poor ionic conductivity at some hundreds degrees could
have excellent superconductors at low temperatures. It seems
rational to expect that the optimization of the electrolytes for
a next generation of fuel cells compels the future research not
to lower as much as possible the high temperatures but to rise
as much as possible the low temperatures.

7 Conclusion

The model has prospected the possibility of SOFCs work-
ing at very low temperatures, where superconduction effects
are allowed to occur. Besides the attracting importance of
the basic and technological research aimed to investigate and
develop high temperature superconductors for the transport
of electricity, the present results open new scenarios as they
concern the production itself of electric power via zero re-
sistivity electrolytes. Of course the chance of efficient fuel
cells operating according to these expectations must be veri-
fied by the experimental activity; if the theoretical previsions
are confirmed at least in the frame of a preliminary laboratory
activity, as it is legitimate to guess since no ad hoc hypothe-
sis has been introduced in the model, then the race towards
high Tc electrolytes could allow new goals of scientific and
applicative interest.
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Weinberg Angle Derivation from Discrete Subgroups of SU(2) and All That
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The Weinberg angle θW of the Standard Model of leptons and quarks is derived from
specific discrete (i.e., finite) subgroups of the electroweak local gauge group SU(2)L ×
U(1)Y . In addition, the cancellation of the triangle anomaly is achieved even when there
are four quark families and three lepton families!

1 Introduction

The weak mixing angle θW , or Weinberg angle, in the suc-
cessful theory called the Standard Model (SM) of leptons and
quarks is considered traditionally as an unfixed parameter of
the Weinberg-Salam theory of the electroweak interaction. Its
value of ∼30◦ is currently determined empirically.

I provide the only first principles derivation of the Wein-
berg angle as a further application of the discrete symme-
try subgroups of SU(2) that I used for the first principles
derivation of the mixing angles for the neutrino mixing matrix
PMNS [1] in 2013 and of the CKM quark mixing matrix [2]
in 2014. An important reminder here is that these derivations
are all done within the realm of the SM and no alternative
theoretical framework beyond the SM is required.

2 Brief review of neutrino mixing angle derivation

The electroweak component of the SM is based upon the local
gauge group SU(2)L x U(1)Y acting on the two SU(2) weak
isospin flavor states ± 1

2 in each lepton family and each quark
family. Its chiral action, i.e., involving LH doublets and RH
singlets, is dictated by the mathematics of quaternions act-
ing on quaternions, verified by the empirically determined
maximum parity violation. Consequently, instead of using
SU(2) generators acting on SU(2) weak isospin states, one
can equivalently use the group of unit quaternions defined by
q = a + bi + cj + dk, for a, b, c, d real and i2 = j2 = k2 =

ijk = −1. The three familiar Pauli SU(2) generators σx, σy,
σz, when multiplied by i, become the three generators k, j, i,
respectively, for this unit quaternion group.

In a series of articles [3–5] I assigned three discrete (i.e.,
finite) quaternion subgroups (i.e., SU(2) subgroups), specif-
ically 2T, 2O, 2I, to the three lepton families, one to each
family (νe, e), (νµ, µ), (ντ, τ). These three groups permeate
all areas of mathematics and have many alternative labelings,
such as [3,3,2], [4,3,2], [5,3,2], respectively. Each of these
three subgroups has three generators, Rs = iUs (s = 1,2,3),
two of which match the two SU(2) generators, U1 = j and U3
= i, but the third generator U2 for each subgroup is not k [6].
This difference between the third generators and k is the true
source [1] of the neutrino mixing angles. All three families
must act together to equal the third SU(2) generator k.

The three generators U2 are given in Table 1, with ϕ =
(
√

5 + 1)/2, the golden ratio. The three generators must add

Table 1: Lepton Family Quaternion Generators U2

Fam. Grp. Generator Factor Angle◦

νe, e 332 − 1
2 i − 1

2 j + 1√
2

k −0.2645 105.337

νµ, µ 432 − 1
2 i − 1√

2
j + 1

2 k 0.8012 36.755

ντ, τ 532 − 1
2 i − ϕ2 j + ϕ

−1

2 k −0.5367 122.459

to make the generator k, so there are three equations for three
unknown factors. The arccosines of these three normalized
factors determine the quaternion angles 105.337◦, 36.755◦,
and 122.459◦. Quaternion angles are double angle rotations,
so one uses their half-values for rotations in R3, as assumed
for the PMNS matrix. Then subtract one from the other to
produce the three neutrino mixing angles θ12 = 34.29◦, θ23 =

−42.85◦, and θ13 = −8.56◦. These calculated angles match
their empirical values θ12=± 34.47◦, θ23=± (38.39◦−45.81◦),
and θ13 = ±8.5◦ extremely well.

Thus, the three mixing angles originate from the three
U2 generators acting together to become the k generator of
SU(2). Note that I assume the charged lepton mixing matrix
is the identity. Therefore, any discrepancy between these de-
rived angles and the empirical angles could be an indication
that the charged lepton mixing matrix has off-diagonal terms.

The quark mixing matrix CKM is worked out the same
way [2] by using four discrete rotational groups in R4, [3,3,3],
[4,3,3], [3,4,3], [5,3,3], the [5,3,3] being equivalent to 2I× 2I.
The mismatch of the third generators again requires the lin-
ear superposition of these four quark groups. The 3× 3 CKM
matrix is a submatrix of a 4× 4 matrix. However, the mis-
match of 3 lepton families to 4 quark families indicates a tri-
angle anomaly problem resolved favorably in a later section
by applying the results of this section.

3 Derivation of the Weinberg angle

The four electroweak generators of the SM local gauge group
SU(2)L × U(1)Y are typically labeled W+, W0, W−, and B0,
but they can be defined equivalently as the quaternion gener-
ators i, j, k and b. But we do not require the full SU(2) to act
upon the flavor states ± 1

2 for discrete rotations in the unitary
plane C2 because the lepton and quark families represent spe-
cific discrete binary rotational symmetry subgroups of SU(2).
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That is, we require just a discrete subgroup of SU(2)L ×
U(1)Y . In fact, one might suspect that the 2I subgroup would
be able to perform all the discrete symmetry rotations, but
2I omits some of the rotations in 2O. Instead, one finds that
2I× 2I′ works, where 2I′ provides the “reciprocal” rotations,
i.e., the third generator U2 of 2I becomes the third generator
U′2 for 2I′ by interchanging ϕ and ϕ−1:

U2 = −
1
2

i − ϕ
2

j +
ϕ−1

2
k, U′2 = −

1
2

i − ϕ
−1

2
j +
ϕ

2
k. (1)

Consider the three SU(2) generators i, j, k and their three
simplest products: i× i = −1, j× j = −1, and k× k = −1. Now
compare the three corresponding 2I× 2I′ discrete generator
products: i× i = −1, j× j = −1, and

U2 U′2 = −0.75 + 0.559i − 0.25 j + 0.25k, (2)

definitely not equal to −1. The reverse product U′2U2 just
interchanges signs on the i, j, k, terms.

One needs to multiply this product quaternion U2U′2 by

P = 0.75 + 0.559i − 0.25 j + 0.25k (3)

to make the result −1. Again, P′ has opposite signs for the i,
j, k, terms only.

Given any unit quaternion q = cos θ + n̂ sin θ, its power
can be written as qα = cosαθ + n̂ sinαθ. Consider P to be a
squared quaternion P = cos 2θ + n̂ sin 2θ because we have the
product of two quaternions U2 and U′2. Therefore, the quater-
nion square root of P has cos θ =

√
0.75 = 0.866, rotating

the U2 (and U′2) in the unitary plane C2 by the quaternion an-
gle of 30◦ so that each third generator becomes k. Thus the
Weinberg angle, i.e., the weak mixing angle,

θW = 30◦. (4)

Therefore, the Weinberg angle derives from the mismatch of
the third generator of 2I× 2I′ to the SU(2) third generator k.

The empirical value of θW ranges from 28.1◦ to 28.8◦,
values less than the predicted 30◦. The reason for the discrep-
ancy is unknown (but see [7]), although one can surmise ei-
ther (1) that in determining the Weinberg angle from the em-
pirical data perhaps some contributions have been left out, or
(2) the calculated θW is its value at the Planck scale at which
the internal symmetry space and spacetime could be discrete
instead of continuous.

4 Anomaly cancellation

My introduction of a fourth quark family raises immediate
suspicions regarding the cancellation of the triangle anomaly.
The traditional cancellation procedure of matching each lep-
ton family with a quark family “generation by generation”
does produce the triangle anomaly cancellation by summing
the appropriate U(1)Y , SU(2)L, and SU(3)C generators, pro-
ducing the “generation” cancellation.

However, we now know that this “generation” conjecture
is incorrect, because the derivation of the lepton and quark
mixing matrices from the U2 generators of the discrete binary
subgroups of SU(2) above dictates that the 3 lepton families
act as one collective lepton family for SU(2)L × U(1)Y and
that the 4 quark families act as one collective quark family.

We have now created an effective single “generation” with
one effective quark family matching one effective lepton fam-
ily, so there is now the previously heralded “generation can-
cellation” of the triangle anomalies with the traditional sum-
mation of generator eigenvalues [8]. In the SU(3) representa-
tions the quark and antiquark contributions cancel. Therefore,
there are no SU(3)× SU(3)×U(1), SU(2)×SU(2)×U(1),
U(1)×U(1)×U(1), or mixed U(1)-gravitational anomalies
remaining.

There was always the suspicion that the traditional “gen-
eration” labeling was fortuitous because there was no spe-
cific reason for dictating the particular pairings of the lepton
families to the quark families within the SM. Now, with the
leptons and quarks representing the specific discrete binary
rotation groups I have listed, a better understanding of how
the families are related within the SM is possible.

5 Summary

The Weinberg angle derives ultimately from the third genera-
tor mismatch of specific discrete subgroups of SU(2) with the
SU(2) quaternion generator k. The triangle anomaly cancel-
lation occurs because 3 lepton families act collectively to can-
cel the contribution from 4 quark families acting collectively.
Consequently, the SM may be an excellent approximation to
the behavior of Nature down to the Planck scale.
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Michael Edward McCulloch

University of Plymouth, Plymouth, PL4 8AA, UK. E-mail: mike.mcculloch@plymouth.ac.uk

It has been shown that cone-shaped cavities with microwaves resonating within them

move slightly towards their narrow ends (the emdrive). There is no accepted explanation

for this. Here it is shown that this effect can be predicted by assuming that the inertial

mass of the photons in the cavity is caused by Unruh radiation whose wavelengths

must fit exactly within the cavity, using a theory already applied with some success to

astrophysical anomalies where the cavity is the Hubble volume. For the emdrive this

means that more Unruh waves are “allowed” at the wide end, leading to a greater inertial

mass for the photons there. The gain of inertia of the photons when they move from

the narrow to the wide end, and the conservation of momentum, predicts that the cavity

must then move towards the narrow end, as observed. This model predicts the available

observations quite well, although the observational uncertainties are not well known.

1 Introduction

It was first demonstrated by Shawyer (2008) that when mi-

crowaves are made to resonate within a truncated cone-

shaped cavity a small, unexplained acceleration occurs to-

wards the narrow end. In one example when 850 W of power

was put into such a cavity with end diameters of 16 and 12 cm,

and which had a Q value (dissipation constant) of 5900 the

thrust measured was 16 mN towards the narrow end. The

results from two of Shawyer’s experiments are shown in Ta-

ble 1 (rows 1-2). There is no explanation for this behaviour

in standard physics, and it also violates the conservation of

momentum, and Shawyer’s own attempt to explain it using

special relativity is not convincing, as this theory also should

obey the conservation of momentum (Mullins, 2006).

Nethertheless, this anomaly was confirmed by a Chinese

team (Juan et al., 2012) who put 80-2500 W of power into

a similar cavity at a frequency of 2.45 GHz and measured a

thrust of between 70 mN and 720 mN. Their result cannot

however be fully utilised for testing here since they did not

specify their cavity’s Q factor or its geometry.

A further positive result was recently obtained by a NASA

team (Brady et al., 2014) and three of their results are also

shown in Table 1 (rows 3 to 5). They did provide details of

their Q factor and some details of their cavity’s geometry. The

experiment has not yet been tried in a vacuum, but the abrupt

termination of the anomaly when the power was switched off

has been taken to show the phenomenon is not due to moving

air.

McCulloch (2007) has proposed a new model for inertial

mass that assumes that the inertia of an object is due to the

Unruh radiation it sees when it accelerates, radiation which is

also subject to a Hubble-scale Casimir effect. In this model

only Unruh wavelengths that fit exactly into twice the Hubble

diameter are allowed, so that a greater proportion of the waves

are disallowed for low accelerations (which see longer Unruh

waves) leading to a gradual new loss of inertia as accelera-

tions become tiny, of order 10−10 m/s2. This model, called

MiHsC (Modified inertia by a Hubble-scale Casimir effect)

modifies the standard inertial mass (m) as follows:

mi = m

(

1 −
2c2

|a|Θ

)

= m

(

1 −
λ

4Θ

)

(1)

where c is the speed of light, Θ is twice the Hubble distance,

a is the magnitude of the relative acceleration of the object

relative to surrounding matter and λ is the wavelength of the

Unruh radiation it sees. Eq. 1 predicts that for terrestrial ac-

celerations (eg: 9.8 m/s2) the second term in the bracket is

tiny and standard inertia is recovered, but in low acceleration

environments, for example at the edges of galaxies or in deep

space (when a is small and λ is large) the second term in the

bracket becomes larger and the inertial mass decreases in a

new way.

In this way, MiHsC can explain galaxy rotation without

the need for dark matter (McCulloch, 2012) and cosmic ac-

celeration without the need for dark energy (McCulloch,

2007, 2010), but astrophysical tests like these can be ambigu-

ous, since more flexible theories like dark matter can be fitted

to the data, and so a controlled laboratory test like the Em-

Drive is useful.

Further, the difficulty of demonstrating MiHsC on Earth

is the huge size of Θ in Eq. 1 which makes the effect very

small unless the acceleration is tiny, as in deep space. One

way to make the effect more obvious is to reduce the distance

to the horizon Θ (as suggested by McCulloch, 2008) and this

is what the emdrive may be doing since the radiation within

it is accelerating so fast that the Unruh waves it sees will be

short enough to be limited by the cavity walls in a MiHsC-like

manner.

2 Method

The setup is a radio-frequency resonant cavity shaped like a

truncated cone, with one round end then larger than the other.

When the electromagnetic field is input in the cavity the mi-

crowaves resonate and we can consider the conservation of
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momentum for the light

∂(mv)

∂t
= 0 = m

∂v

∂t
+ v
∂m

∂t
. (2)

Interpreting the first term on the right hand side as the

force (mass times acceleration) that must be exerted on the

light to conserve its momentum, leads to

F = −c
∂m

∂t
. (3)

So that

F = −c
∂m

∂x

∂x

∂t
= −c2 ∂m

∂x
. (4)

Normally, of course, photons are not supposed to have

mass in this way, but supposing we consider this? We assume

the inertial mass of the microwave photons (whatever its ab-

solute value) is affected by MiHsC, but instead of the horizon

being the far-off and spherically symmetric Hubble horizon

as before, the horizon is now made by the asymmetric walls

of the cavity. This is possible because the photons involved

are travelling at the speed of light and are bouncing very fast

between the two ends of seperation s and their acceleration

(a ∼ v2/s) is so large that the Unruh waves that are assumed

to produce their inertial mass are about the same size as the

cavity, so they can be affected by it, unlike the Unruh waves

for a terrestrial acceleration which would be far to long to be

affected by the cavity. This dependence of the inertial mass

on the width of the cavity means that the inertial mass is cor-

rected by a MiHsC-like factor (Eq. 1). Using Eq. 4, the force

is modified as follows

F = −c2
(mbigend − msmallend

l

)

(5)

where l is the axial length of the cavity. Now using eq. 1

for the inertial masses and replacing the Hubble scale with

the cavity width (W) assuming for simplicity the waves only

have to fit laterally, and with subscripts to refer to the big and

small ends, we get

F =
−c2m

l

(

λ

4Wbig

−
λ

4Wsmall

)

(6)

where λ is the wavelength of the Unruh radiation seen by the

photons because they are being reflected back and forth by

the cavityλ = 8c2/a = 8c2/(2c/(l/c)) = 4l so that

F = −4c2m

(

1

4Wbig

−
1

4Wsmall

)

. (7)

Using E = mc2 and E =
∫

Pdt where P is the power,

gives

F = −

∫

Pdt

(

1

Wbig

−
1

Wsmall

)

. (8)

Table 1: Summary of EmDrive experimental data published so far,

and the predicted (Eq. 10) and observed anomalous thrust.

Expt. P Q l wbig/wsmall FPred FObs

W /1000 m metres mN mN

S1 850 5.9 0.156 0.16/0.1275 4.2 16

S2 1000 45 0.345 0.28/0.1289 216 80-214

B1 16.9 7.32 0.332 0.397/0.244 0.22 0.091

B2 16.7 18.1 0.332 0.397/0.244 0.53 0.05

B3 2.6 22 0.332 0.397/0.244 0.1 0.055

Integrating P over one cycle (one trip of the photons from

end to end) gives Pt where t is the time taken for the trip,

which is l/c, so

F =
−Pl

c

(

1

Wbig

−
1

Wsmall

)

. (9)

This is for one trip along the cavity, but the Q factor quan-

tifies how many trips there are before the power dissipates so

we need to multiply by Q

F =
−PQl

c

(

1

Wbig

−
1

Wsmall

)

(10)

where P is the power input as microwaves (Watts), Q is the

Q factor measured for the cavity, l is the length of the cavity

and Wbig and Wsmall are the diameters of the wide and narrow

ends of the cavity. MiHsC then predicts that a new force will

appear acting towards the narrow end of the cavity.

3 Results

We can now try this formula on the results from Shawyer

(2008) (from section 6 of their paper). This EmDrive had

a cavity length of 15.6 cm, end diameters of 16 cm and 12.75

cm, a power input of 850 W and a Q factor of 5900, so

F =
850 × 5900 × 0.156

3 × 108

(

1

0.16
−

1

0.1275

)

= 4.2 mN. (11)

This predicts an anomalous force of 4.2 mN towards the

narrow end, which is about a third of the 16 mN towards the

narrow end measured by Shawyer (2008).

We can also try values for the demonstrator engine from

section 7 of Shawyer (2008) which had a cavity length of 32.5

cm, end diameters of 28 cm and 12.89 cm, a power input of

1000 W and a Q factor of 45000. So we have

F =
1000 × 45000 × 0.325

3 × 108

(

1

0.28
−

1

0.1289

)

= 216 mN.

(12)

This agrees with the observed anomalous force which was

between 80 and 214 mN/kW (2008) (if we also take into ac-

count the uncertainties in the model due to the simplified 1-

dimensional approach used).
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Table 1 is a summary of various results from Shawyer

(2008) in rows 1 and 2 and Brady et al. (2014) (see the Ta-

ble on their page 18) in rows 3, 4 and 5. The Juan et al.

(2012) data is excluded because they did not specify their Q

factor or the exact geometry in their paper. Column 1 shows

the experiment (S for Shawyer (2008) and B for Brady et al.

(2014)). Column 2 shows the input power (in Watts). Column

3 shows the Q factor (dimensionless, divided by 1000). Col-

umn 4 shows the axial length of the cavity. Column 5 shows

the width of the big and small ends (metres). Column 6 shows

the thrust predicted by MiHsC and column 7 shows the thrust

observed (both in milli-Newtons).

It is unclear what the error bars on the observations are,

but they are likely to be wide, looking for example at the

range of values for the case S2. MiHsC predicts the correct

order of magnitude for cases S1, S2, B1 and B3 which is in-

teresting given the simplicity of the model and its lack of ad-

justable parameters. The anomaly is case B2 where MiHsC

overpredicts by a factor of ten. This case is anomalous in

other ways since the Q factor in B2 was more than doubled

from that in B1 but the output thrust almost halved.

More data is needed for testing, and a more accurate mod-

elling of the effects of MiHsC will be needed. This analysis

for simplicity, assumed the microwaves only travelled along

the axis and the Unruh waves only had to fit into the lateral

“width” dimension, but in fact the microwaves will bounce

around in 3-dimensions so a 3-d model will be needed. This

approximation would become a problem for a pointed cone

shape where the second term in Eq. 10 would involve a divi-

sion by zero, but it is a better approximation for a truncated

cone, as in these experiments.

So far, it has been assumed that as the acceleration re-

duces, the number of allowed Unruh waves decreases linearly,

but even a small change of frequency can make the difference

between the Unruh waves fitting within a cavity, and not fit-

ting and this could explain the variation in the observations,

particularly in case B2.

4 Discussion

If confirmed, Equation 10 suggests that the anomalous force

can be increased by increasing the power input, or the qual-

ity factor of the cavity (the number of times the microwaves

bounce between the two ends). It could also be increased by

boosting the length of the cavity and narrowing it. The effect

could be increased by increasing the degree of taper, for ex-

ample using a pointed cone. The speed of light on the denom-

inator of Eq. 10 implies that if the value of c was decreased

by use of a dielectric the effect would be enhanced (such an

effect has recently been seen).

This proposal makes a number of controversial assump-

tions. For example that the inertial mass of photons is finite

and varies in line with MiHsC. It is difficult to provide more

backing for this beyond the conclusion that it is supported by

the partial success of MiHsC in predicting the EmDrive with

a very simple formula.

5 Conclusions

Three independent experiments have shown that when mi-

crowaves resonate within an asymmetric cavity an anomalous

force is generated pushing the cavity towards its narrow end.

This force can be predicted to some extent using a new

model for inertia that has been applied quite successfully to

predict galaxy rotation and cosmic acceleration, and which

assumes in this case that the inertial mass of photons is caused

by Unruh radiation and these have to fit exactly between the

cavity walls so that the inertial mass is greater at the wide end

of the cavity. To conserve momentum the cavity is predicted

to move towards its narrow end, as seen.

This model predicts the published EmDrive results fairly

well with a very simple formula and suggests that the thrust

can be increased by increasing the input power, Q factor, or

by increasing the degree of taper in the cavity or using a di-

electric.
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Superdeformed (SD) states in nuclei in mass region A ∼ 60− 90 are investigated within

the framework of two-parameter formula of Bohr and Motelson model. The concept of

γ-ray transition energy Eγ over spin (EGOS) is used to assign the first order estimation

of the bandhead spin. The model parameters and the true spin of bandhead have been

obtained by adopted best fit method in order to obtain a minimum root-mean-square

deviation between the calculated and the experimental γ-ray transition energies. The

transition energies Eγ and the dynamical moment of inertia J(2) for data set include thir-

teen SD bands in even-even nuclei are calculated. The results agree with experimental

data well. The behavior of J(2) as a function of rotational frequency ~ω are discussed.

By using the calculated bandhead moment of inertia, the predicted quadrupole moments

of the studied yrast SD bands are calculated and agree well with the observed data.

1 Introduction

Since the initial discovery of a superdeformed (SD) rotational

band in 152Dy [1], several SD bands were identified in differ-

ent mass region [2]. The SD 60, 80 and 90 regions are of

particular interest because they showed exciting new aspects

of their large rotational frequency and they present experi-

mental difficulties due to the increased doppler broading of

γ-ray peaks and the decreased detection efficiency at large γ-

ray transition energies. In A ∼ 60, the negative-parity SD1 in
62Zn was the first SD band [3], it assigned to configurations

with two ig9/2 protons (π) and three ig9/2 neutrons (ν). It is

formed in the Z = 30 deformed gap i.e with two f7/2 proton

holes [4,5]. The SD bands in A ∼ 60 region are characterized

by very large transition energies reaching 3.2 MeV or more.

The yrast SD band in Sr was interpreted [6, 7] as having the

ν 52π51 configuration, i.e the excitation of two N = 5, h11/2

intruder neutrons, which corresponding to the N = 44 shell

gap with a large deformation, and a single proton excitation

of the N = 5, h11/2 intruder orbital. The predicted deforma-

tion for this band was β2 ≃ 0.55 [6]. A systematic analysis

on S r nuclei shows that the quadrupole moment of the SD

band in 82Sr is the largest among these Sr isotopes. This may

be an indication of the important role of N = 44 SD shell

gap. For the region A ∼ 90 SD states with large deformation

β2 ≃ 0.6 in 88Mo were identified [8]. These findings were

in agreement with cranked Woods-Saxon-Strutinsky calcula-

tions, which predicted Z = 42 and Z = 43 to be favored

particle numbers at SD shapes in A ∼ 90 nuclei [8, 9].

As it is well known, the experimental data on SD bands

consist only in a series of γ-ray transition energies linking

levels of unknown spins. Spin assignment is one of the most

difficult and unsolved problem in the study of superdeforma-

tion.This is due to the difficulty of establishing the deexci-

tation of a SD band into known yrast states of normal de-

formed band. Several approaches to assign the spins of SD

bands were proposed [10–16]. For all such approaches an ex-

trapolation fitting procedures was used. The purpose of the

present paper is to predict the spins of the SD nuclear states

in the A ∼ 60 − 90 region and to study their properties by

using the one-parameter and two-parameters Bohr-Mottelson

model. The theoretical formalism is presented in section 2.

The theoretical results and a comparison with experimental

data are discussed in section 3. Finally a brief conclusion is

given in section 4.

2 The formalism

For the strongly deformed nuclei, the collective excitations

exhibit a spectrum of rotational character. In even-even nu-

clei, the spectrum is given by:

E(I) = A [I(I + 1)] (1)

where A is the inertial parameter A = ~2/2J, with J denot-

ing the effective moment of inertia, which is proportional to

the square of the nuclear deformation, and expected to vary

slowly with the mass number A. The γ-ray transition energies

with the band are given by:

Eγ(I) = E(I) − E(I − 2)

= 4A
(

I − 1
2

)

.
(2)

It is interesting to discuss the energy levels by plotting the

ratio Eγ(I) to spin (I− 1
2
)(EGOS)(E−Gamma Over Spin) [17]

against spin. Therefore, the EGOS for rotational formula (2)

can be written as:

EGOS =
Eγ(I)
(

I − 1
2

) = 4A. (3)

Even in a first note on deformed nuclei, Bohr and Mottel-

son [18] remarked that the simple rotational formula equation

(1) gives deviations from experimental data. They pointed out
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Table 1: The calculated E Gamma Over Spin (EGOS) for 62Zn(SD1) compared to the experimental ones at three bandhead spins I0, I0 ± 2

using the one-parameter formula.

I0 = 14.5 I0 = 16.5 I0 = 18.5

I(~) EGOS (keV/~) EGOS (keV/~) EGOS (keV/~)

exp. cal. exp. cal. exp. cal.

16.5 124.562 124.560

18.5 123.055 124.560 110.722 110.720

20.5 122.000 124.560 110.750 110.700 99.650 99.648

22.5 122.272 124.560 110.909 110.720 100.681 99.648

24.5 122.458 124.560 112.083 110.720 101.666 99.648

26.5 124.461 124.560 113.038 110.720 103.461 99.648

28.5 115.571 110.720 104.964 99.648

30.5 107.866 99.648

Table 2: The calculated E Gamma Over Spin(EGOS) for 62Zn(S D1) compared to the experimental ones at three bandhead spins I0, I0 ± 2

using the two-parameter formula.

I0 = 18 I0 = 20 I0 = 22

I(~) EGOS (keV/~) EGOS (keV/~) EGOS (keV/~)

exp. cal. exp. cal. exp. cal.

20 102.205 101.692

22 103.023 102.901 92.697 92.477

24 103.829 104.124 94.255 94.143 84.808 84.607

26 105.490 105.599 95.686 95.957 86.862 86.759

28 106.872 107.304 97.818 97.919 88.727 88.978

30 109.694 109.221 99.627 100.019 91.186 91.280

32 102.730 102.287 93.301 93.678

34 96.597 96.180

that agreement was improved by adding to it a second term

(The Bohr-Mottelson two-term formula)

E(I) = A[I(I + 1)] + B[I(I + 1)]2. (4)

The new parameter B is almost negative and is 103 times

less than that value of A.

Eγ(I) = A(4I − 2) + B
[

2(4I − 2)
(

I2 − I + 1
)]

, (5)

and the EGOS can be written as:

EGOS =
Eγ(I)
(

I − 1
2

)

= 4A + 8B
(

I2 − I + 1
)

.

(6)

For SD bands, one can determine the first-order estima-

tion of the bandhead spin I0 using equation (2) by calculating

the ratio

Eγ(I0 + 4)

Eγ(I0 + 2)
=

E(I0 + 4) − E(I0 + 2)

E(I0 + 2) − E(I0)
=

2I0 + 7

2I0 + 3
. (7)

Let

Eγ1
= Eγ(I + 2), (8)

Eγ2
= Eγ(I + 4), (9)

J2
0 =

4

Eγ2
− Eγ1

, (10)

we can find the bandhead spin I0 as:

I0 =
1

2

[

Eγ1
J2

0 − 3
]

. (11)

Now, let us define the angular velocity ω as the derivative

of the energy E with respect to the spin I

ω = ~−1 dE

dÎ
; Î = [I(I + 1)]

1
2 . (12)

Two possible types of moments of inertia were suggested

by Bohr and Mottleson [18] reflecting two different aspects

of nuclear dynamics. The kinematic moment of inertia J(1)

and the dynamic moment of inertia J(2):

J(1) =
~

2

2

[

dE

d[I(I + 1)]

]−1

=
~

ω
[I(I + 1)]

1
2 , (13)
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Table 3: The bandhead spin proposition and the model parameters A and B adopted from the best fit procedures for the studied SD bands

in the A = 62 − 88 mass region. The experimental bandhead moment of inertia are also given.

Z N Nuclear and Eγ(I0 + 2→ I0) I0 A B

the SD band (keV) (~) (keV) (keV)

30 32 62Zn(SD1) 1993 20 20.997 2.313×10−3

38 42 80Sr(SD1) 1443 16 20.881 -1.873×10−4

80Sr(SD2) 1688 18 22.106 -1.041×10−3

80Sr(SD3) 1846 18 24.056 -4.466×10−4

80Sr(SD4) 2140 20 26.371 -1.705×10−3

38 44 82Sr(SD1) 1429.8 17 19.292 1.770 ×10−4

40 46 86Zr(SD1) 1518 23 14.732 5.881 ×10−4

86Zr(SD2) 1577 16 23.390 -1.354×10−3

86Zr(SD3) 1866 25 19.082 -1.146×10−3

86Zr(SD4) 1648 18 22.037 -1.021×10−3

42 46 88Mo(SD1) 1238.6 33 5.788 1.308×10−3

88Mo(SD2) 1458.6 33 7.676 1.219×10−3

88Mo(SD3) 1259.1 23 11.406 1.202×10−3

J(2) = ~2





















d2E

d
[

[I(I + 1)]
1
2

]2





















= ~
d[I(I + 1)]

1
2

dω
. (14)

J(1) is equal to the inverse of the slope of the curve of energy

E versus Î2 times (~2/2), while J(2) is related to the curvature

in the curve of E versus Î.

In terms of our two-parameter Bohr-Mottleson formula

equation (4), yield

~ω(I) = 2Î
(

A + 2BÎ2
)

, (15)

J(1)(I) = J0

(

1 +
2B

A
Î2

)−1

, (16)

J(2)(I) = J0

(

1 +
6B

A
Î2

)−1

, (17)

with

J0 =
~

2

2A
. (18)

Experimentally the dynamic moment of inertia J(2) is re-

lated to the difference ∆Eγ in consecutive transition energies

Eγ along a band in the following way

J(2) =
dI

dω
≃ ∆I

∆ω
≃ 2

∆
(

Eγ

2

) =
4

∆Eγ

=
4

Eγ(I + 2→ I) − Eγ(I → I − 2)

(19)

remembering that ω ≃ Eγ/2. Hence equal ∆Eγ’s imply equal

J(2)’s.

The quadrupole deformation parameter β2 are derived

from the electric quadrupole transition probabilities B(E2).

For this purpose, the well formula [18]

B(E2, I → I − 2) =
5

16π
Q2

0〈2020|00〉2, (20)

was first applied to extract the intrinsic quadrupole moment

Q0. Then the deformation β2 of the nuclear charge distribu-

tion was derived with the expression [19]

Q0 =
3
√

5π
ZR2β2(1 + 0.36β2) × 10−2eb (21)

where R = 1.2 A
1
3 fm, and Z is the number of protons and A

is the number of nucleons.

If X represents the ratio between the major to minor axis

of an ellipsoid, then X can be deduced from Q by using the

following formula [19]

Q =
2

5
ZR2 X2 − 1

X
2
3

× 10−2eb. (22)

The bandhead moment of inertia J0 is related to the

quadrupole deformation β2 by the Grodzins formula [20]

J0 = c(Z)A
5
3 β2

2. (23)

c(Z) describes the calibration of this relationship between J0

and β2.

3 Results and discussions

For each SD band, we used the EGOS concepts of the one-

parameter and the two-parameter models equations(3,6) to as-

sign the bandhead spin I0. Tables (1, 2) and Figure(1) presents
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Table 4: Level spin I, γ-ray transition energies Eγ and the dynamical moment of inertia J(2) calculated by using the optimized best parame-

ters listed in Table(3). The experimental γ-ray transition energies are also listed.

62Zn(SD1) 80Sr(SD3)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1993 22 1988.275 17.849 1846 20 1849.857 21.806

2215 24 2212.375 17.054 2039 22 2033.287 22.028

2440 26 2446.915 16.269 2216 24 2214.874 22.275

2690 28 2692.781 15.499 2391 26 2394.445 22.549

2939 30 2950.862 14.750 2572 28 2571.830 22.853

3236 32 3222.048 2747 30 2746.857

82Sr(SD1) 86Zr(SD1)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1429.8 19 1436.598 25.385 1518 15 1513.088 29.361

1596.6 21 1594.170 25.273 1646 17 1649.323 28.729

1757.7 23 1752.439 25.151 1785 19 1788.551 28.081

1918.6 25 1911.473 25.020 1929 21 1930.996 27.417

2076.6 27 2071.340 24.880 2077 23 2076.886 26.745

2228.6 29 2232.107 24.731 2228 25 2226.446 26.066

2380.7 31 2393.844 24.574 2383 27 2379.901 25.384

2544.6 33 2556.616 24.408 2540 29 2537.478 24.702

2736 35 2720.494 2696 31 2699.403

86Zr(SD3) 86Zr(SD4)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1866 27 1851.803 36.037 1648 20 1658.218 25.696

1959 29 1962.798 38.197 1811 22 1813.881 26.412

2062 31 2067.518 40.815 1967 24 1965.327 27.241

2155 33 2165.521 44.030 2123 26 2112.163 28.202

2244 35 2256.368 48.048 2273 28 2253.996 29.317

2343 37 2339.618 53.181 2403 30 2390.435 30.615

2429 39 2414.832 2491 32 2521.086

80Sr(SD4) 88Mo(SD2)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

2140 22 2132.134 23.600 1458.6 35 1460.250 29.582

2292.1 24 2301.619 24.723 1595.6 37 1595.465 27.823

2459 26 2463.411 26.068 1740.1 39 1739.226 26.182

2621.1 28 2616.854 27.693 1894.9 41 1892.002 24.652

2763 30 2761.294 2054.2 43 2054.260 23.227

2224.3 45 2226.469

80Sr(SD2) 88Mo(SD1)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1 E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1688 20 1662.433 25.670 1238.6 35 1228.823 31.877

1821.1 22 1818.252 26.399 1342.1 37 1354.302 29.707

1950 24 1969.772 27.244 1480.7 39 1488.949 27.716

2090 26 2119.593 28.224 1633.5 41 1633.266 25.891

2256 28 2258.315 29.363 1795.5 43 1787.756 24.218

2364.1 30 2394.540 30.692 1962.2 45 1952.921 22.683

2573.9 32 2524.865 2133.4 47 2129.269 21.274

2306.6 49 2317.284
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Table 6: The calculated quuadrupole deformation parameter β2 and the major to minor axis ratio X in the yrast SD bands for even-even
62Zn, 80,82Sr, 86Zn and 88Mo nuclei. The experimental quadrupole moments Qexp are also given for comparison.

J0 C(Z) β2 Q X Qexp

(~2MeV−1) eb eb

62Zn(SD1) 23.835 0.1261 0.4410 2.6178 1.52 2.70
80Sr(SD1) 24.002 0.1106 0.3822 3.3438 1.44 3.42
82Sr(SD1) 25.917 0.1089 0.3920 3.4973 1.45 3.54
86Zr(SD1) 33.939 0.0996 0.4508 4.4512 1.54 4.60

88Mo(SD1) 86.385 0.1707 0.5390 5.8295 1.66 6.00

Table 5: Level spin I, γ-ray transition energies Eγ and the dynamical

moment of inertia J(2) calculated by using the optimized best param-

eters listed in Table(3). The experimental γ-ray transition energies

are also listed.

80Sr(SD1)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1443 18 1453.619 24.395

1611 20 1617.584 24.500

1775.1 22 1780.848 24.616

1948 24 1943.338 24.745

2118 26 2104.983 24.886

2284 28 2265.711 25.041

2440.9 30 2425.449 25.208

2595 32 2584.127 25.389

2743 34 2741.672 25.585

2680 36 2898.011

86Zr(SD3)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1577 18 1579.123 24.266

1730 20 1743.961 25.036

1890 22 1903.730 25.944

2056 24 2057.908 27.014

2227 26 2205.976 28.280

2392 28 2347.414 29.786

2514 30 2481.702 31.591

2562 32 2608.320 33.776

2708 34 2726.748

88Mo(SD3)

E
exp
γ (keV) I(~) Ecal

γ (keV) J(2)(~2MeV)−1

1259.1 25 1259.498 31.051

1382.6 27 1388.315 29.644

1522.9 29 1523.249 28.265

1669.4 31 1664.763 26.926

1817.0 33 1813.317 25.631

1976.0 35 1969.375 24.386

2134.0 37 2133.397 23.195

2297.0 39 2305.846

the numerical values and graph of EGOS at three different

values of bandhead spins I0, I0 ± 2 for the yrast SD band in
62Zn as example for our calculations. The model parameters

Fig. 1: Calculated (solid lines) and experimental (closed circles)

EGOS against spin I for these different values of bandhead spin

I0, I0 ± 2. (a) for first order estimation of I0 (b) for second order

estimation of I0.

A and B are then fitted to reproduce the observed transition

energies Eγ. The procedure is repeated for several trail val-

ues of A and B and recalculate the true spin of the lowest

observed level. In order to illustrate the sensitivity of the root

mean square deviation, we employed the common definition

of the chi squared

χ2 =
1

N

∑

i















E
exp
γ (Ii) − Ecal

γ (Ii)

∆E
exp
γ (Ii)















2

(24)

where N is the number of data points and ∆E
exp
γ is the ex-

perimental error in γ-ray transition energies. The experimen-

tal data are taken from the evaluated nuclear structure data

file ENSDF [2]. Table (3) lists the bandhead spin proposi-

tion and the adopted model parameters. Using the best fitted

parameters, the spins I, the γ-ray transition energies Eγ, the

rotational frequency ~ω and the dynamical moment of iner-

tia J(2) are calculated and listed in Table(4) compared to the

observed Eγ.

Figures (2, 3, 4) shows the experimental and calculated

dynamical moment of inertia J(2) as a function of rotational

frequency ~ω for the SD bands in our even-even nuclei. The

experimental and calculated values are denoted by solid cir-

cles and solid lines respectively.

By substituting the calculated bandhead moment of iner-

tia J0 in Grodzins formula equation (23), we adjusted the pro-
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Fig. 2: Shows the experimental and calculated dynamical moment

of inertia J(2) as a function of rotational frequency ~ω for even-even
62Zn(SD1) and 80Sr(SD1, SD2, SD3 and SD4). The experimental

and calculated values are denoted by solid circles and solid lines

respectively.

portional constant c(Z) for each yrast SD band and extracted

the deformation parameter β2 and then calculated the transi-

tion quadrupole moment Q which is related to the ratio X of

the major to minor axis. The results are given in Table (5).

4 Conclusion

The structure of the SD bands in the mass region A ∼ 60− 90

have been investigated in the framework of two-parameter

Bohr-Mottelson model. The bandhead spins have been ex-

tracted by using first order estimation method using the con-

cept of EGOS. The model parameters have been determined

by using a best fit method between the calculated and the ex-

perimental transition energies. The calculated transition en-

ergies Eγ, rotational frequency ~ω and dynamic moments of

inertia J(2) are all well agreement with the experimental ones.

This confirm that our model is a particular tool in studying

the SD rotational bands. The behavior of J(2) as a function of

~ω have been discussed. The quadrupole deformation param-

eters are also calculated.

Submitted on December 5, 2014 / Accepted on December 12, 2014

Fig. 3: Shows the experimental and calculated dynamical moment

of inertia J(2) as a function of rotational frequency ~ω for even-even
82Sr(SD1) and 86Zn(SD1, SD2, SD3 and SD4). The experimental

and calculated values are denoted by solid circles and solid lines

respectively.

Fig. 4: Shows the experimental and calculated dynamical moment

of inertia J(2) as a function of rotational frequency ~ω for even-even
88Mo(SD1, SD2 and SD3). The experimental and calculated values

are denoted by solid circles and solid lines respectively.

86 Gaballah N. Structures of Superdeforemed States in Nuclei with A ∼ 60 Using Two-Parameter Collective Model



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

References

1. Twin P. J. , Nyak B. M. Observation of a Discrete Line Superdeformed

Band up to 60~ in 152Dy. Physical Reveiw Letters, 1986, v. 57, 811–

814.

2. National Nuclear Data Center NNDC, Brookhaven National Labora-

tory, http.//www.nndc.bnl.gov/chart/

3. Svenssan C.E. et al. Observation and Quadrupole-Moment Measure-

ment of the First Superdeformed Band in the A ∼ 60 Mass Region.

Phys. Rev. Lett., 1997, v. 79, 1233.

4. C. H. Yu et al, Comparison of Superdeformation Bands in 61Zn and
60Zn: Possible evidence for T = 0 Pairing. Phys. Rev. 1999, v. 60C,

031305.

5. Johnasson E.K. et al. Phys. Rev., 2008, v. C77, 064316.

6. Smith A.G. et al. Observation of Superdeformation in 82Sr. Phys. Lett.,

1995, v. 355B, 32.

7. Yu C.H. et al. Lifetime Measurements of Normally Deformed and Su-

perdeformed States in 82Sr. Phys. Rev., 1998, v. 57C, 113.
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Nuclear Power and the Structure of a Nucleus According to J. Wheeler’s

Geometrodynamic Concept

Anatoly V. Belyakov

E-mail: belyakov.lih@gmail.com

In this paper on a unified basis in terms of mechanistic interpretation of J. Wheeler’s ge-

ometrodynamic concept the attempt to explain the nature of nuclear forces as the result

of the complex nucleons structure and to submit the model of the structure of atomic

nuclei is done. It is shown that the assumption of the existence of closed contours,

including electron and proton quarks leads to a conclusion about the existence of W,

Z-bosons and also the Higgs boson whose mass is calculated. Values of the coupling

constants in the strong and weak interactions are calculated, and it is shown that they

do not indicate the strength of the interaction, but indicate only the strength of bonds

between the elements of nucleon structure. The binding energy of the deuteron, triton

and alpha particles are defined. Dependence of the nucleon-nucleon interaction of the

distance is explained. The structural scheme of nuclei is proposed, the inevitability of

presence of envelopes in nuclei is proved, the formulas allowing to estimate the features

of nuclear structure, as well as correctly to assess the binding energy of nuclei and their

mass numbers are obtained. The results of calculations at the level of the model suggest

the possibility to use this model for the construction of an appropriate theory.

1 Introduction

At present there is no a complete theory of the nuclear struc-

ture, which would explain all properties of atomic nuclei. To

describe properties and behavior of atomic nuclei, different

models are used, each of which is based on various experi-

mental facts and explains some allocated properties of the nu-

cleus. One reason for this is that the analytical dependences

for the interaction forces between nucleons are until now not

derived.

In the quantum theory, the interaction between the mi-

croparticles is described as an exchange of specific quanta

(photons, pions, gluons, and vector bosons) associated with

these types of interactions. The dimensionless parameter de-

termining the relative strength of any interaction (an interac-

tion constant or coupling constant α) is assumed proportional

to the source interaction charge by analogy with the charge of

an electron in the electromagnetic interaction:

αe =
e2

~c
=

1

137
, (1)

where e is the electron charge (in the CGSE).

But the problem consists in that for both strong and weak

interactions the mechanism of interaction and, accordingly, a

coupling constant strongly depend on the interaction energy

(distance) and are determined experimentally.

In terms of the developed model based on the mechanistic

interpretation of J. Wheeler’s geometrodynamic concept [1],

such a variety of types and mechanisms of interaction seems

strange and unreasonable. In contrast to the quantum theory,

which states that microphenomena in no way can be under-

stood in the terms of our world scale, the mechanistic inter-

pretation of Wheeler’s idea above all assumes the existence

of common or similar natural laws, which are reproduced at

the different scale levels of matter that, in particular, allows

using of macroscopic analogies in relation to the objects of

microworld.

The proposed model of nuclear forces and nuclear struc-

ture as well as previous works [2–5] is based on the gen-

eral conservation laws and balances between main interac-

tions: electrical, magnetic, gravitational and inertial — with

no additional coefficients or any arbitrary parameters intro-

duced. Without using complicated mathematical apparatus,

this work is not physical and mathematical one, but rather

is the physical and logical model. However, application of

Wheeler’s ideas to this area of microphenomena gives the op-

portunity to clarify the cause and nature of nuclear forces and

give a reasonable scheme of nuclear structure, which is con-

firmed by some of the examples of successful calculations

made on the basis of the model.

2 Initial conditions

Recall that in this article, as well as in the earlier works, the

charges in accordance with Wheeler’s idea treated as singu-

lar points on the three-dimensional surface, connected by a

“worm-hole” or vortical current tube similar to the source-

drain principle, but in an additional dimension of space, con-

stituting a closed contour as a whole.

The closest analogy to this model, in the scale of our

world, could be the surface of ideal liquid, vortical structures

in it and their interactions which form both relief of the sur-

face and sub-surface structures (vortex threads and current

tubes).

In this model, there is no place for a charge as a specific

matter, it only manifests the degree of the nonequilibrium
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state of physical vacuum; it is proportional to the momen-

tum of physical vacuum in its motion along the contour of the

vortical current tube. Respectively, the spin is proportional to

the angular momentum of the physical vacuum with respect

to the longitudinal axis of the contour, while the magnetic in-

teraction of the conductors is analogous to the forces acting

among the current tubes.

In such a formulation the electric constant ε0 makes sense

the linear density of the vortex current tube

ε0 =
me

re

= 3.233 × 10−16 kg/m, (2)

and the value of inverse magnetic constant makes sense the

centrifugal force

1

µ0

= c2ε0 = 29.06 n, (3)

appearing by the rotation of a element of the vortex tube of

the mass me and of the radius re with the light velocity c; this

force is equivalent to the force acting between two elemen-

tary charges by the given radius, and electron charge makes

sense the momentum of the vortex current tube (counter) with

a mass of mec
2/3

0
and with velocity of c

2/3

0
× [m/sec], the en-

ergy of which is equal to the maximum energy of the electron

mec2, i.e.

e = mec
4/3

0
cos qw × [m/sec] = 1.603 × 10−19 kg m/sec, (4)

where c0 is the dimensionless light velocity c × [m/sec]−1, qw
is the Weinberg angle of mixing of the weak interaction, it

equals 28.7◦.

Vortex formations in the liquid can stay in two extreme

forms — the vortex at the surface along the X-axis (let it

be the analog of a fermion of the mass mx) and the vortical

current tube under the surface of the angular velocity v, the

radius r and the length ly along the Y-axis (let it be the ana-

log of a boson of the mass my). These structures oscillate

inside a real medium, passing through one another (forming

an oscillation of oscillations). Probably, fermions conserve

their boson counterpart with half spin, thereby determining

their magnetic and spin properties, but the spin is regener-

ated up to the whole value while fermions passing through

boson form. The vortex thread, twisting into a spiral, is able

to form subsequent structures (current tubes). The possibility

of reciprocal transformations of fermions and bosons forms

shows that a mass (an energy) can have two states and pass

from one form to another.

In paper [2] proceeding from conditions of conservation

of charge and constancy parameters µ0 and ε0, parameters of

the vortex thread my, v, r, for an arbitrary p+– e−-contour de-

fined as a proportion of the speed of light and electron radius

as:

my = (an)2, (5)

v =
c

1/3

0

(an)2
, (6)

r =
c

2/3

0

(an)4
, (7)

where n is quantum number, a is inverse fine structure con-

stant.

Wherein, referring to the constancy ε0 (linear density), it

is clear that the relative length of the tube current in the units

of re is equal boson mass my in the units of me, i.e.

ly = my = (an)2. (8)

In the model the particles themselves are a kind of a con-

tour of subsequent order, formed by the intersection of the X-

surface with the current tube, and they have their own quan-

tum numbers defining the zone of influence of these micropar-

ticles. In [3] determined that for the proton

np =

(

2c0

a5

)1/4

= 0.3338, (9)

for an electron ne =
√

np = 0.5777, and for the critical con-

tour, when r → re and v→ c, nc = c
1/6

0
/a = 0.189.

Hereinafter all the numerical values of the mass, size and

speed are given in dimensionless units: as a proportion of

mass of the electron me, its radius re and speed of light c.

It is important to note that the contour or vortex tube,

which the vortex thread fills helically, can be regarded as

completely “stretched”, i.e. elongated proportional to 1/r or,

on the contrary, extremely “compressed”, i.e. shortened pro-

portional to 1/r and filling all the vortex tube of radius re.

In the latter case its compressed length Lp = ly r is numeri-

cally equal to the energy of the contour boson mass in units

of mass-energy.

Indeed, since r = v2, then the above quantities values in

dimensionless units are in all cases identical:

Lp = ly r = my r = my v
2 =

c
2/3

0

(an)2
. (10)

It is obvious that an arbitrary boson mass in the units of

mass-energy will match of its own value my only in the case

of ultimate excitation of the vortex tube when r → re and

v→ c.

Here are some of the parameters for mentioned three par-

ticular contours. Substituting in the formula (7) and (8) the

parameters ne, np, and nc one can find the characteristic sizes

of the vortex tubes: for an electron vortex thread radius r =

0.0114, the length of the vortex thread ly = 6267, for the

proton r = 0.1024, ly = 2092, for a critical contour r = 1,

ly = 670.

As for the accepted scheme of the nucleons structure, in

[3] it is shown that the proton has a complex structure, which

90 Anatoly V. Belyakov. Nuclear Power and the Structure of a Nucleus According to J. Wheeler’s Geometrodynamic Concept



Issue 1 (January) PROGRESS IN PHYSICS Volume 11 (2015)

is revealed in process of transition to smaller scales with in-

creasing the interaction energy, i.e., as if its “deepening”

along the Y-axis; so to the outside observer the nuclear forces

manifest themselves in a complex manner.

In the inner area of the proton there are three critical sec-

tion (quarks), each of which is crossed by three force lines

(charges 1, 1, −1). The presence of inverse circulation cur-

rents forming three closed contours leads to the fact that the

intersection of the critical section by the lines of force in-

side the proton will for an outside observer be projected on

the outer proton surface in the form of 2
3
, 2

3
, − 1

3
of the total

charge.

Along the Y-axis the proton boson vortex tube is located

having parameters mpy = 2092 and rp = 0.1024. The most

“deep” along the Y-axis the quark vortex tubes are located

with the parameters defined in [3]: the quantum number nk =

0.480, the total fermion mass mkx = 12.9, the total boson

mass mky = 4324, the radius of the vortex tube rk = 0.024.

It should be noted that the value of the parameter rk is con-

firmed by works on studying of neutron polarizability. In [6]

the lower limit the polarizability coefficient is specified of

ap = 0.4×10−42 cm3. This means that the linear inhomogene-

ity parameter in the structure of the neutron coincides with the

radius of the quark vortex tube as (ap)1/3 = 7.37 × 10−15 cm

or 0.026 re.

Neutron has three closed contour, i.e. six force lines in-

stead of nine ones, which a proton has, and, therefore, the

total neutron quark mass has the value of 12.9 × 2/3 = 8.6.

Having in mind adopted direction and the possible distribu-

tion of the force lines in the neutron [3], one can expect that in

the case of neutron polarization neutron may have the charges

in the inner region of 1, −1, or −1, 2
3
, 1

3
, and in the projection

of the outer surface of − 2
3
, 1

3
, 1

3
.

In the contour connecting the charged particles, the

quarks are involved in the circulation and become an active

part of the nucleon mass. It is assumed that in the critical

section circulation velocity reaches the velocity of light, so

quarks are actually dark matter, which is equivalent to the

mass defect, reflecting the energy of bonds within nucleons or

nuclei; the nominal mass-energy of a quark is 0.511 × 12.9
3
=

2.2 MeV.

When considering the closed contour having contra-

directional currents, from the balance of magnetic and gravi-

tational forces recorded in a “Coulombless” form the charac-

teristic size of a contour as a geometrical mean of two linear

values is obtained:

lk =
√

li ri =

√

zg1
zg2

ze1
ze2

√

2πγ ε0 × [sec] , (11)

where zg1
, zg2

, ze1
, ze2

, ri, li are gravitational masses and

charges expressed through masses and charges of an electron,

a distance between current tubes and theirs length.

Number of vortex thread constituting contour reflects the

difference of material medium from vacuum, and their great-

est value corresponds to the ratio of electrical forces to grav-

itational forces, i.e. value:

f =
c2

ε0 γ
= 4.16 × 1042, (12)

where γ is the gravitational constant.

The contour can be considered located both in the X-area

(for example, p+– e−-contour in atom) and in the Y-area (vor-

tex tube inside an atomic nucleus). When a proton and an

electron come together (for example, when its contraction by

the e-capture) a deformation of the contour takes place, en-

ergy and the fermion mass increase, while the boson mass

decreases, but the impulse (charge) is conserved.

Formula (11) for unit charge taking zg2
= 1 and after cal-

culating the constants gets the form in the units of re and me:

mk = zg1
= b l2k , (13)

where mk is the proton quark mass involved in the circulation

contour, b = 5.86 × 10−5.

Parameter lk is composite. If the contour (vortex tubes) is

directed along the Y-axis, then ri = r, li = ly, if the contour

is directed along the X-axis, then in calculating parameters

are replaced, i.e. ri = ly, li = r. Having in mind (7), (8),

(11), and (13)), replacing arbitrary parameters ri and li by the

sizes of short and long axes of the contour and calculating

constants, we obtain the formulas relating the quark mass and

the contour linear parameters:

mk =
26.25

r
= 0.0392

√

ly , (14)

and also

r

√

ly = c
1/3

0
. (15)

3 On boson masses

The circuit parameters in X-region and Y-region in the gen-

eral case do not match, but both include the quark mass,

which depends on the size of the contour. Let us compare

the parameters of these contours for some specific cases.

Let us consider X-contour of own electron at ne = 0.5777.

Its size along the X-axis, as follows from (8), ri = ly = 6267.

From (14) we find the quark mass mk = 3.10. For having of

the same value of mass-energy Lp, Y-contour, as follows from

(10), should have a quantum number n = 2.77. The boson

mass of such a contour according to (5) my = 1.44× 105, that

is close to the mass of W-bosons.

Let us consider the contour of own proton at np = 0.3338.

Its size along the X-axis ri = ly = 2092 and the quark mass

mk = 1.795. Y-contour having the same value of mass-energy

has n = 3.645. Boson mass of such a contour my = 2.494 ×
105, that is almost exactly corresponds to the mass of the

Higgs boson (125 GeV).
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Let us consider the critical contour at nc = 0.189. Its size

along the X-axis ri = ly = 672 and the quark mass mk = 1.02.

That is, in the limiting case the quark mass becomes equal to

the mass of an electron. Y-contour having the same value of

mass-energy has n = 4.884, i.e. it is a standard contour [2].

The boson mass of such a contour my = 4.48 × 105, that is

close to the total mass of W, Z-bosons.

Thus, these relations between the masses of the particles

taking part in the weak interaction (quarks, bosons, protons,

and electrons) to some extent clarify the nature of the weak

interaction and the physical meaning of its interpretation as

“the exchange of bosons”. It turns out that W, Z-bosons and

the Higgs boson are the vortex tube having the value of mass-

energy equal to mass-energy of the quarks included in the cir-

culation contours corresponding to their own electron, proton,

and critical contours. And in the course of the weak inter-

action X-contour is reduced and when performing this con-

dition, it is reoriented to Y-region, transmitting momentum

(charge) to the proton while keeping the angular momentum

(spin, in the case of e-capture, for example); then it is ex-

tracted as a neutrino [3]. From the above it implies that the

Higgs boson is not a unique particle in microcosm.

4 The coupling constants

In [5] a formula is obtained, from which it follows that the

unit contour or vortex tube having a momentum equivalent to

the electron charge consist of three unit vortex threads. After

transformation this formula can be written as:

n3
i =

mec
2/3
0

re
√

2π × [sec2]

2πγm2
e

r2
e

= 26.25. (16)

This formula represents the ratio of inertial forces occur-

ring during acceleration of the standard contour boson mass

and acting toward to periphery (as the value re√
2π × [sec]

is the

rotational speed of the vortex thread relative to the longitudi-

nal axis of the contour [3]) to the gravity forces acting be-

tween the masses of me at a distance of re. The numera-

tor is constant, so the formula depends only on the force of

gravity, i.e. from interacting masses and distances between

them. This ratio (or its modification for arbitrary mi and ri)

can be the equivalent of the coupling constant, as indicates

the strength of the bonds between the elements of the proton

structure (quarks).

4.1 Strong interaction

Suppose that quarks are located at the corners of an equi-

lateral triangle at a distance re. In this case each of them

is exposed of the sum of two projections forces, therefore

the denominator into (16) should be corrected by multiplier

2 sin 60◦. As a result, the formula (16) in the relative units of

re and me after calculating of constants takes the form:

as = 15.15

(

ri

mi

)2

. (17)

Consider the case of the strong interaction at low ener-

gies where the parameter ri is greater than the nucleon size

rn. Let the mass of the proton quark takes a minimum value

me (section 3), the distance between the quarks is re; substi-

tuting ri = 1, mi = 1 into (17), we obtain as = 15.15, which

coincides with the known value determined at low energies

as ∼ 15.

It should be expected that at as = 1, there is a balance

between the forces of gravity and peripheral inertia forces,

which the nominal size of the proton can be determined from.

Indeed, under this condition (17) it follows ri = 0.257, and the

size of the vortex tube, accordingly, is 0.257/ sin 60◦ = 0.297

or 0.84 fm, which coincides with the proton radius.

Consider the case of the strong interaction with ri < rn,

where the energy of the interacting particles is high (about

100 GeV), and they approach each other at the minimum dis-

tance of the vortex proton tube rp = 0.1023 (section 2). In this

case, the distance between the quarks inscribed in the vortex

proton tube is ri = rp sin 60◦ = 0.0887. Substituting ri and

mi = 1 into (17), we obtain as = 0.119. This calculated value

coincides with the experimental data. Indeed, in [7] it was

found that at the given energy as = 0.1176± 0.0024.

Now it becomes clear physical meaning of the great dif-

ference in magnitudes of this type interaction. At low ener-

gies of the interacting particles affecting only the outer struc-

ture of nucleons (ri > rn, low “depth” along Y-axis) the pe-

ripheral inertial forces exceed the forces of gravity, so the el-

ements of the structure (quarks) are weakly bonded to each

other, can move away from the starting position and interact

with nearby nucleon quarks. At high energies (ri < rn, more

“depth” along Y-axis) interaction occurs at the level where

the forces of mutual attraction holds the quarks in the bound

state within the nucleon size, that leads to a decrease in the

efficiency of the interaction of microparticles as a whole.

Note, that in the atoms nuclei quarks may also be in a

bound state due to their large masses, which they acquire

when entering into the p+– e−-contours.

4.2 Weak interaction

When the weak interaction (such as in the case of e-capture,

for example) the bosonic part of the proton quark or vortex

tubes take part (section 3).

Let us assume that the mass of each of three quark tubes

mi = mky = 4324/3 = 1441 (section 2). Substituting mi

and ri = 1 into (17), we find aw = 0.73 × 10−5. This value

agrees with the value of aw, defined through Fermi constant

(1 × 10−5). At high interaction energies (about 100 GeV) the

constant aw increases to ∼ 1
40

. In our model this increase can

also be explained.
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At the limit excitation of the contour vortex tube at the

quarks level when v → c and r → re boson mass becomes

equivalent to its mass-energy, but because the parameters ε0

and µ0 are constant then the radius of the vortex tube increases

proportional to the ratio re/rk. Since re/rk = 41.7, then in this

case ri = 41.7, and the parameter aw increases proportionally

to the square of this ratio, i.e. aw = 0.73×10−5×41.722 = 1
78

,

which is in agreement with the value of aw determined at high

energies.

4.3 On the electron

Suppose that the formula (17) is applied to the electron itself.

Electron contains three vortex threads. Assuming ri = re and

considering that the boson mass of an electron vortex threads

is mi =
1
3

(ane)
2 = 2089, and it coincides with the proton

boson mass, it is obvious that the coupling constant for the

electron in the weak interaction is identical to that of the pro-

ton.

As for the strong interaction then in this case mi =
1
3

me.

Substituting into (17) ri = 1 and mi =
1
3
, we find as = 136.4,

which almost coincides with the value of the reciprocal fine

structure. Proceeding from the enormous value of the cou-

pling constant as the electron structure cannot be in a bound

state, and in equilibrium at as = 1 the size of the electron

would be very small at ri = 0.086. But having such a small

radius the electron charge cannot place itself according to the

classical definition, by which the potential energy of the elec-

trostatic field is completely equivalent to the rest mass of an

electron.

Thus, the electron to resolve this contradiction and be

able to exist itself shall continuously oscillate between these

states. Its pulsations provide the motion of medium along the

p+– e−-contours thereby confirming definition of the charge

as the momentum.

Summing up the results of Chapter 4 one can say that the

coupling constant defines neither the nature of nuclear forces,

nor the interaction force, but only indicates the strength of the

bonds within the complex structure of nucleons.

5 The nucleus

When considering nuclear forces hereinafter to take into ac-

count the Coulomb interaction at various energy levels (dis-

tances) proved sufficient, from which it can be concluded that

the introduction of any special nuclear forces is not required,

at least within the limits of this model.

As for scheme of nuclear structure, then the proposed

scheme is, to a certain extent, associated with collective

model (J. Rainwater, 1959, A. Bohr, and B. Mottelson, 1952).

This model combines the provisions of the hydrodynamic and

the envelope model and suggests that the nucleus consists of

the inner stable part — the core formed the nucleons of filled

envelopes and the outer nucleons moving in the field gener-

ated by the core nucleons.

5.1 Nuclear forces

Are there any special nuclear forces at all?

At high energies and short distances, i.e. when approach-

ing nucleons to their radius rn = 0.842 fm and overlapping of

their internal structures, the interaction between nucleons oc-

curs inside their total “quark bag” between oppositely quarks

having inside the nucleon structure the charges of 1 and −1 at

the distance of its vortex tube. Let us assume that the quark

mass is minimal and equal to me, i.e. it is identical to an elec-

tron, then its vortex tube size is equal to the electron vortex

tube size rk = 0.0114 (section 2).

Write the formula for the potential in the units of MeV

and the fractions of re. The depth of the attractive potential at

the minimum distance for unit charges is

V = −
0.511

rk

, (18)

which gives − 44.8 MeV (see Figure 1).

With further approach of nucleons at even higher energies

(greater “depth” along Y-axis) the interaction at the level of

boson vortex nucleons tubes is added. It is understood that the

unidirectional vortex tubes are repelled, and as far as “deep-

ening” along Y-axis their radius r decreases (here the role of

magnetic attraction forces is negligible). Since the mass per

unit length is reduced in proportion to the square of the radius,

the local value of the electrical constant (linear density) ε0 is

reduced proportional to the ratio r/re. Thus repulsive poten-

tial as a result increases in inverse proportion to the square of

the distance, and the resulting potential-distance dependence

receives the form below:

V = 0.511

(

−
1

rk

+
1

r2

)

MeV. (19)

Beyond “quark bag”, at the distance of the nucleon diam-

eter, the Coulomb interaction occurs between the fractional

Fig. 1: Dependence of the nucleon-nucleon interaction on the dis-

tance between them.
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charges of different signs, located on the outer surface of pro-

tons. Thus, attractive potential sharply decreases, for protons

it is in proportion to the product of 1
3
× 2

3
= 2

9
. Namely, at

the distance 2rn = 1.684 fm attractive potential decreases to

a value 2
9
× 44.8 = 9.96 MeV.

Another reference point for plotting the dependence V(r)

can be found by equating the Coulomb repulsive forces be-

tween two protons at the distance between their centers to

the residual attractive forces acting between the fractional

charges located on the outer surface of the protons. In this

case we have:

e2

ε0 r2
=

2

9

e2

ε0 (r − 2rn)2
, (20)

from which we obtain r = 2rn

(

1 −
√

2
9

)−1

= 3.78rn = 3.19

fm, i.e. distance where the attractive forces between the nu-

cleons can be neglected. The resulting dependence V(r) is

shown in Figure 1 and it as a whole corresponds to actual

dependence.

Thus, it may be concluded that any special nuclear forces

do not exist, and complex nuclear interaction is explained by

the forces of unified nature (electrical) acting between the el-

ements of the complex structure of nucleons at different levels

(the “depths” along Y-axis), which are determined by the in-

teraction energy.

5.2 The binding energy of deuterium, tritium and alpha

particles

A deuterium nucleus — the deuteron is a rather loose forma-

tion, and therefore it can be assumed that the bond of two

nucleons due to Coulomb forces between the proton having

on its outer surface fractional charges of 2
3
, 2

3
, − 1

3
and the po-

larized neutron with charges on the surface of − 2
3
, 1

3
, 1

3
. Let

us assume that the nucleons form its own contour having at

n = np the parameters ly = 2092 and r = 0.1024 (section 2).

When substituting r into (18), we obtain the binding energy

(potential) in the units of MeV bonding the nucleons in the

deuteron: Ed = 0.511× ( 2
3
× 2

3
)/0.1024 = 2.22 MeV that cor-

responds exactly to the actual binding energy of the deuteron.

Could this be an accidental coincidence? It is known that

the good description of the characteristics of the deuteron pro-

vides the selection of the nucleon-nucleon n-p potential in the

form of a rectangular pit of depth V ∼ 35 MeV and of width

d = 2 fm [8]. Assuming that d is the distance between the

centers of nucleons, one can find that the distance between the

fractional charges on the nucleon periphery is d−2rn = 0.316

fm or 0.112 re. The result is in good agreement with the pro-

ton vortex tube size, i.e. with parameter r, that confirms the

correctness of calculation.

The tritium nucleus — triton consists of a proton and two

neutrons attached. The mean square charge radius of the tri-

ton is 1.63 fm, so, obviously, the nucleons are in contact. Let

Fig. 2: Settlement scheme of the alpha particle: a — on the basis of

the quark masses, b — on the basis of energy of the quarks.

us assume that the neutrons are polarized with charges of 1,

−1. Binding energy can be determined by summing the mass-

energy of the four quarks involved in creating bonds. As a

result, we get Ed = 2.2 × 4 = 8.8 MeV that is close to the

actual triton binding energy (8.48 MeV).

An alpha-particle is a spherically symmetric object with

radius of about 2 Fermi, and it is the most stable and compact

structure (cluster) that can occur inside the atomic nucleus. If

we assume that nucleons are in contact with each other, then

for symmetrical arrangement of four nucleons having radii

rn = 0.842 fm and forming a closed system as a whole, in

fact, the alpha-particles radius will be 2.04 fm, Figure 2.

The alpha particle emitted from a nucleus overcomes the

potential barrier and, in addition, is a surplus energy in dif-

ferent ranges. Apparently, in addition to the mass-energy of

eight quarks involved in the interaction, there is a necessity

to take into account also the mass-energy of the two pro-

tons quarks included in p+– e−-contours; this mass-energy

depends on the quantum number of the contour, Figure 2a.

It was revealed that alpha-clustering is most probable in the

nucleus surface region where the density of nuclear matter is

reduced to about one-third of density in the nucleus central

part [9]. Therefore, we can assume that the protons of alpha-

particles leaving the nucleus are associated with the second

electron shell (the first one has only two electrons).

From (8), (13), and (14) it follows that the masses of

quarks that are constituents in a p+– e−-contour are propor-

tional to the quantum number:

mk = b a c
1/3

0
n = 5.377 n , (21)

i.e. for the second shell the quark mass is equal to 10.75.

As a result, given the potential repulsion of two protons

(∼ 0.6 MeV at a specified distance 2.38 fm on the scheme),

we obtain: Ea = 0.511×(4.3×8+10.75×2)−0.6 = 28.0 MeV,

which corresponds well to the actual alpha particles binding
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energy (28.2 MeV).

One can determine the binding energy from another con-

siderations by summing the energy of bonded opposite

charges, assuming that the distance between them is equal

to the radius of the electron vortex tube r = 0.0114 = 0.032

fm, Figure 2b. Other positive charges of the protons quarks

are associated with the atom electrons, and the unaccounted

negative neutrons charges create the repulsive potential. The

bonds form a closed system, so one can assume that the al-

pha particle binding energy is the averaged binding energy

of a link, since at destruction of a link the particle splits as a

whole. Indeed, it is known that to remove of only a nucleon

from alpha particles the energy about 20 MeV is required [9].

Given the above, referring to the adopted charges layout,

the alpha particles geometry, and specified dimensions, one

can write the final formula for the binding energy as the av-

erage energy per bond at subtracting the repulsive potentials

of protons as whole units and the fractional charge repulsion

potentials of neutrons:

Ea =
1

4

(

1 × 1 +
1

3
× 1 + 1 × 1 +

1

3
× 1

)

0.511

r
–

− 1 × 1 ×
0.511

b
−

(

2

3
×

2

3

)

0.511

c
, (22)

where b and c are calculated from geometrical considerations:

b = 2rn

√
2 = 2.38 fm or 0.845, c = 2rn(

√
2 − 1) = 0.697 fm

or 0.248. Substituting the values, we obtain Ea = 28.3 MeV,

which coincides with the actual value.

It is known that the nuclei can be seen as the system of nu-

cleons and at the same time as the system of the large number

of clusters of different nature, which are in dynamic equilib-

rium, i.e. they disintegrate, are again formed and exchanged

both nucleons and energy [10]. The closer to the nucleus cen-

ter are protons, the higher energy they have, since the pro-

ton quarks mass-energy included in the p+– e−-contours in-

creases in proportion to the quantum number. When the trans-

fer of energy from the center and from the inner envelopes to

the periphery occurs, alpha-particles leaving the nucleus sur-

face have the energy excess equal to the energy difference

between the corresponding levels, i.e. referring to (22) and at

changing to energy units Ea = 2.75(n2 − n1) MeV.

Thus, when the excitation transfer from the third to the

second envelope the energy of alpha-particles having two pro-

tons may be not more than 2× 2.75 = 5.5 MeV, and when the

excitation transfer from the fourth to the second envelope —

twice as much, not more than 11 MeV.

Indeed, for the emitted alpha particles there are two en-

ergy ranges: with the upper limit of 2–4 MeV for rare earth el-

ements and 4–9 MeV for the elements heavier than lead [11].

Not numerous long-range alpha particles with higher energy

get this energy after series of collisions with protons in the

center of the nucleus, which are associated with the fifth,

sixth, and seventh envelopes; accordingly, their maximum en-

ergy can reach 2×2.75(7−2) = 27.5 MeV. The resulting value

matches exactly the value of the maximum alpha particles en-

ergy, defined in during the study of heavy nucleus fission ac-

companied by the formation of three charged particles [12].

Moreover, in these particles energy spectrum there is no fine

structure, which is understandable, since the energy of such

particles is derived from protons homogeneously packed in

the “quark bag” in the nucleus core, but not from the struc-

tural units in the nuclear envelopes composition having cer-

tain specificities.

It should be noted that the binding energies differences

between neighboring isotopes for the nuclei of almost all ele-

ments are in the range of 20 MeV (for isotopes with the least

number of neutrons) to 2 MeV (for isotopes with the greatest

number of neutrons). That is, in the most cases these energy

differences lie in the range from the nominal mass-energy of

a cluster 2.2 × 8 = 17.6 MeV to the mass-energy of a quark

2.2 MeV. This means that in the first case, with the excess of

protons, addition of a neutron leads to the formation of an en-

tire cluster (alpha-particles) and in the second case, with the

excess of neutrons, — to another quark be only involved in a

common bound nucleus structure.

Another fact confirming that clusters are only formed in

the envelopes from the first to the fourth is the amount of iso-

topes depleted by neutrons. Typically, for most of elements

(except radioactive ones) it is close to the number of clus-

ters. The maximum amount of such isotopes Platinum has

(Pt195. . . Pt166), it is equal to the number of clusters in all four

envelopes (30).

5.3 On the nucleus structure

In accordance with the model the packing density of alpha-

clusters and of protons in particular increases toward the cen-

ter of the nucleus, as the distance between the vortex tubes

of p+– e−- contours is reduced and the vortex tubes length in-

creases. Therefore, the electrons located at the more distant

orbits are associated with the protons located at the deeper

nucleus levels; thus the layers or envelopes are formed in the

nucleus that similarly to the electronic shells.

Suppose that the distance ri between the vortex tubes can-

not be less than the size of alpha-particles (4 Fermi). This

condition limits the number of the electronic shell whose

electrons can associate with the protons belonging to alpha-

clusters and, accordingly, the nucleus envelope which deeper

alpha-clusters are not formed. From (14) and (8) implies

n > 3.44. Even if the diameter of the equivalent sphere equal

to the volume of four alpha-particles nucleons (∼ re) to accept

for limiting size, and even then n < 5. That is the electrons of

the fifth and subsequent atom shells are associated with pro-

tons in the center of the nucleus; these protons are here not

part of the alpha-clusters. Thus, the fourth layer (envelope) is

the last in the nucleus.

It should be noted that a similar condition for the nu-
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cleon size also determines the maximum possible number of

the atom electron shell. Indeed, assuming ri > 2rn, we find

nmax 6 8.1.

Consider the heavy atom nucleus, for example, 82Pb207,

wherein there is a fourth filled electron shell with 32 electrons

and, accordingly, the fourth layer of 16 clusters in the nucleus.

It is not difficult calculate the outer and inner radii of the layer,

assuming that one alpha-cluster has a volume equivalent to

the volume of four nucleons, i.e. 4 × (2rn)3 = 19.1 fm3. The

inner radius is 2.93 fm. The remaining 22 protons are not

part of the proton clusters; they are located in the center of

the nucleus and have the volume equivalent to the sphere of

exactly the same radius 2.93 fm. The outer diameter of the

nucleus as a whole in the summation of the thickness of the

four envelopes is 2.93+4×2rn = 9.66 fm, which corresponds

to the size of heavy nuclei.

Thus, it appears that for the elements heavier than lead,

the protons taking part in the contours where electrons belong

to the fifth and subsequent shells no longer completely go in

the core of the nucleus. With increasing the number of pro-

tons the fourth nuclear envelope expands, additional neutrons

are included in it, and radius of the nucleus increases.

Neutrons are not included in the cluster (for 82Pb207 of

such neutrons are 65) are placed in the free volume being

forced out into the outer envelopes. One can assume that the

average distance between them is not less re, accordingly, the

average volume per a neutron exceeds 22.4 fm3 that provides

the nuclear attraction forces between neutrons to be absent

and neutrons to move freely. Now it is possible to calcu-

late the number of neutrons in the void volume (excluding

the first envelope, which is the transition boundary structure,

where the nuclear and charge density fall sharply down) and

then the mass number. For lead the outer radius of the second

envelope is 9.66 − 2rn = 7.98 fm, its volume is 2130 fm3.

Subtracting from this volume the volume of 30 clusters (120

nucleons) and subtracting the volume of 22 nucleons in the

center of the nucleus, we obtain the volume 1452 fm3, which

can accommodate 65 neutrons. As a result, adding the num-

ber of protons (82) and neutrons in clusters (60), we obtain

the exact mass number for the stable isotope of lead A = 207.

The highest density of nuclear matter exists in the nucleus

center and in the inner envelopes. Assuming that the nucle-

ons packing density in the nuclear core and in the adjoining

envelope are identical, i.e. their nuclear density is the same,

and on the basis of the above geometrical considerations, it

is possible derive the relation between the number of nucle-

ons in the nucleus core zcor and their number in the adjoining

envelope zenv, which provides this homogeneity condition:

zenv = c

(

1 + (
zcor

c
)1/3

)3

–zcor , (23)

were c = 4π
3

.

Equation (23) observed for the lead very precisely: 22

nucleons in the center correspond to 64 nucleons in the 4th

Fig. 3: Condition of the nucleus central part homogeneity with re-

spect to the initial number of nucleons for the stable isotopes of some

elements.

envelope (32 protons and 32 neutrons), so it turns out that

in the nucleus core neutrons are absent. For the lighter nuclei

the inner envelope volume including protons and neutrons can

be considered as the core. Condition (23) is also satisfied of

about for iron (4 nucleons in 4th envelope, 28 nucleons in 3d

envelope), xenon (8 nucleons in the core 36 nucleons in 4th

envelope) and for a few other elements. At that, for the nuclei

of these elements the observed electric quadrupole moments

are close to zero. For most other elements situation may be

different; in the general case part of the neutrons or go in the

nucleus core, or go in the adjacent envelope, and such nuclei

may take a non-spherical shape.

Thus, for the condition (23) to be satisfied, it is necessary

(for the metals heavier than iron having one or two electron at

the fourth electronic shell) for the additional neutrons that are

outside clusters to replenish the fourth inner nucleus envelope

and (for the metals with Z = 37 . . .52, many of lanthanides,

and heavy metals before lead) to instil into the nucleus core.

For others, mainly non-metals and the elements heavier than

lead, the neutrons must replenish the envelope adjoining to

the nucleus inner part. Figure 3 shows the position of the

curve zcor(zenv) respect to the initial number of nucleons for

stable isotopes of some elements.

Thus, knowing the structure of the atom electron shell

and, accordingly, the number of protons in nucleus envelopes

and its core, specifying the number of neutrons and having

in mind the condition (23), one can try to reproduce the nu-

cleus structure for different atoms and their isotopes. There is

a question, how exactly the condition (23) should be satisfy

during of additional neutrons distribution? That is whether

equation (23) can be solved in integers, as it is done for lead?

Perhaps this peculiarity defines some properties of the iso-

topes: lifetime and others.

To fill the outer nuclear envelopes neutrons there is usu-

ally no in enough. Therefore, for some nuclei its outer en-
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Even numbered elements

Elements 4Be9
8O16

14Si28
26Fe56

30Zn65
42Mo96

62Sm150
74W184

92U238

Actual, MeV 58.2 128 237 492 567 831 1239 1473 1802

Calculated, MeV 62.6 131 244 487 566 822 1232 1479 1806

Calculated A 9 16 28 56 65 99 151 184 236

Odd numbered elements

Elements 5B11
17Cl35

21Sc45
29Cu64 39Y89

51Sb122
67Ho165

83Bi209
93Np237

Actual, MeV 76.4 298 388 559 775 1033 1344 1640 1795

Calculated, MeV 79.7 303 388 544 757 1009 1344 1636 1821

Calculated A 11 35 45 63 90 123 165 208 238

velope must be squeezed, lose shape of a spherical layer and

take the form of a polyhedron, in the corners of which alpha-

clusters are. A similar phenomenon is starting to get a confir-

mation, for example, in [13].

5.4 The nuclei binding energies and the mass numbers

It is well known that nuclear binding energy En is calculated

by the Weizsäcker semiempirical formula, based on the liq-

uid drop model and consists of five members and empirical

coefficients reflecting the contribution of various components

in the total binding energy.

Presented above model allows calculating the nucleus

binding energy without having to empirical coefficients. As

mentioned in section 5.2, the nucleus energy is ultimately de-

termined by the mass-energy of nucleon quarks. Represent

this energy as the sum of the nominal energy of eight quarks

in all clusters (Figure 2a), included in the envelopes from the

first to the fourth as 8 × 2.2 zkl, the total energy of the pro-

ton quarks belonging to p+– e−-contour as 2.75(m1 + 2m2+

3m3 + . . .), and the base energy of the first envelope as 2.75 z.

The latter may be associated with a potential barrier.

Here it is denoted: zkl is the clusters number, z is the pro-

tons total number, mi is the electrons number in the i-th atom

shell.

The final amount when changing the clusters number by

the protons number in clusters has the form:

En = 8.8 zpkl + 2.75 (m1 + 2m2 + 3m3 + . . . + z) , MeV (24)

where zpkl is the total protons number in the first — the fourth

envelopes.

Formula (23) for the binding energy does not depend on

the neutrons number; this indicates that for stable isotopes a

certain optimum amount of neutrons are in accordance with

protons. It turns out that it is possible to calculate the neu-

trons number based on energy balance considerations, using

the dependences previously obtained.

It is considered that the neutrons and protons are different

states of nucleons. This is true for the nominal quark masses

of nucleons, since their mass-energies are identical and equal

to 2 × 2.2 = 4.4 MeV. However, the mass-energy of neu-

tron quarks must also comply with the mass-energy of proton

quarks, which are included in the circulating p+– e−-contour

2.75(m1 + 2m2 + 3m3 + . . .), net of the basic energy of the

unfilled first shell 2.75 z and minus the nominal mass-energy

of proton quarks, located in the nucleus center and not con-

nected with neutrons 4.4(z–zpkl).

That is the balance of energy must be from which the neu-

trons number N and further the mass number A = N + z can

be determined:

2.75 (m1 + 2m2 + 3m3 + . . .) − 2.75 z − 4.4
(

z–zpkl

)

=

= 4.4 N MeV, (25)

A = zpkl + 0.625 (m1 + 2m2 + 3m3 + . . . –z) + (4)A<140 . (26)

For the mass number an amendment is necessary in some

cases, which, it may be supposed, is the consequence of the

presence of alpha-cluster four nucleons in the first envelope,

which are split off when the nucleus reaches a certain mass.

Thus, for light and medium nuclei the result of formula (26)

should be increased by 4. For the heavier nuclei with A> 140,

the amendment is not necessary, that seems to be due to their

natural alpha decay. For the transuranic elements nuclei, as

calculations are shown, their binding energy should also be

reduced by the amount of the alpha particle binding energy.

Table 1 show the actual and calculated data of the binding

energy and mass number rounded to the integer for the stable

isotopes of certain elements according to the formulas (24)

and (26). These formulas are obtained under the condition

that the nuclei structure satisfies the condition (23). Exist-

ing slight variations in binding energy to the lower side for

medium nuclei can be eliminated by considering their indi-

vidual features, for example, with taking into account the en-

ergy bonds of additional neutrons, which replenish the core

or adjoining nucleus envelope.
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6 Conclusion

It seems surprising that the complex nature of nuclear forces

and the structure of atomic nuclei proved possible to be large-

ly understood without involving actual quantum concepts and

complex mathematical apparatus.

The mass of equivalent to the Higgs boson mass are ob-

tained, the coupling constants in different types of interac-

tions, the binding energy of the deuteron, triton, and alpha

particles are defined, the possible ranges of alpha particles en-

ergies are identified, and dependence of the nucleon-nucleon

interaction from a distance is explained. Based only on the

composition of the atom electron shells, it was possible to

determine the nuclei binding energies, the nucleus neutron

numbers, to reveal the important features of nuclei.

Obviously, these results indicate that the model adequa-

tely reflects the fundamental features of the atomic nucleus

structure. These results give reason to believe that the forego-

ing model can become the basis of further theoretical devel-

opments for detailed describing the properties of nuclei and

their behavior in nuclear reactions.
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Charge and mass gauging procedure is carried out by means of counting the oscillation

numbers of an auxiliary top-speed signal (“photons”) between the appropriately ordered

electrons and positrons, moving under their interaction along the diagonals of the cube

toward its center (the “cube star”). Regular lattices composed of such stars transport the

values of charge and mass over space-time regions. The gauge consists in detection of

the cube symmetry in each star. However, the detected symmetry can also be observed,

even if some particles of the basic electron/positron star are replaced with heavy mesons.

These become an unavoidable byproduct of the gauge procedure. Two possible sub-

symmetries of the cube realizing such replacement correspond to two mesons, but the

regularity of the whole lattice holds only for some particular values of their masses.

Numerical solutions to the non-linear ODE systems describing this situation yield these

masses in terms of electron mass, which are close to those of the µ- and τ-mesons.

1 Introduction

The existence of the three flavor families remains a mystery,

and it appears rather artificial in the otherwise self-contained

structure of the standard model of particle physics (see, for

instance, [1]). As in all basic structures of physics, theories

must agree with experimental facts, and, in turn, the perfor-

mance of experiments depends on existing theoretical con-

ceptions. The design of measuring devices includes their

gauge, which is an intermediary between the measurement

of interest and some standard test measurements. In order

to eliminate clocks and rods in the gauge, which might hide

some features of the desired correspondence, we suggested

a direct motion-to-motion gauge [2, 3]. We shall show that

the flavor families naturally arise from the particular way this

gauge could be carried out. Since all related experiments

are ultimately based on the observation of the trajectories of

charged particles in external electromagnetic fields, the gauge

of electric charges and masses of particles is at the heart of

any measurement. A relevant gauge procedure could use a

regular lattice comprised of elementary cells (“stars”), each

one being a standard configuration of the trajectories of test

particles that are identical, apart from the sign of their charges

[2, 3]. Starting with the stars that are primary for the gauge

lattice, the whole lattice is constructed in such a way that the

primary stars completely define secondary ones. The result-

ing relay races make it possible to transport the initial val-

ues of charge and mass over a chosen space-time region. In

an appropriate construction of the lattice, each star could be

connected to a previous star along various sequences of inter-

mediate stars. The preservation of charge and mass over such

transports might be detected, provided various paths connect-

ing a pair of stars reveal the same symmetry at both ends ac-

cording to the dynamics of involved particles.

In order to realize this program one needs a method to

construct standard stars unambiguously. For this purpose, it

was proposed to count top signal oscillations between the par-

ticles of the star [2]. No rods or clocks are then needed, pro-

vided the elementary stars possess some symmetry belong-

ing to the Platonic solids. In this communication, we confine

ourselves to the lepton sector of elementary particles, cor-

responding to the cube subsystem of the full dodecahedron

structure. To this end, consider electrons and positrons mov-

ing along the diagonals of the cube toward its center under

mutual attraction — the “cube star”. The cube consists of

two interlaced tetrahedrons — one for electrons, another for

positrons, and the star is thus electrically neutral as a whole.

Charge is being gauged by means of detecting the cube sym-

metry as being seen in the equality of the related numbers of

photon oscillations, so that the detection of even one extra

oscillation is sufficient to find this symmetry broken. (It is

convenient to replace formally the counting of inter-particle

oscillations with that between the particle and an imaginary

central body; the translation is straightforward.) Of particu-

lar interest is the limiting case of the finest lattice, in which

only one photon oscillation is sufficient to detect the symme-

try of the star. Just this finest star will be considered in what

follows.

The regular lattice comprises the stars as elementary cells

to form a whole charge gauging structure. For this to be possi-

ble, the electrons/positrons are bound to turn into neutrinos at

the center: Otherwise, the exit potential together with the ra-

diation reaction force would prevent their leaving the star, so

destroying the lattice forming connections. We regard neu-

trinos massless (or having a mass that is negligible as com-

pared to that of other involved particles), hence moving prac-

tically with the velocity of light independently of their kinetic

energy.

Only the simplest case of cube star symmetry breaking

was considered in the charge gauging procedure [2, 3], i.e.

that in which asymmetry may occur only between the two

opposite-charge tetrahedrons of the cube. The breaking of
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cube symmetry in this case consists in this that particles be-

longing to different tetrahedrons have dissimilar masses m

and/or absolute values of charge e, while these parameters

remain identical within each tetrahedron. Perfect symmetry

will be observed, provided all the involved particles have the

same values of both m and |e|. In this case, the asymmetry

to be detected is, in a sense, the weakest, and we assign it

to the first flavor family, i.e. to that of the electron. We re-

gard this — electron/positron — star as the basic one and

ask whether or not our photon oscillations counting proce-

dure might detect the symmetry as observed, even if some

electrons/positrons in the star are being replaced with differ-

ent particles. Detection of a perfect star with our method re-

quires both charges and masses of the involved particles to be

identical. Upon assuming the charges to remain equal, let us

consider the lattice, in which some particles have a different

mass. While electrons must turn into neutrinos in each star,

these foreign particles (“mesons”) are able to pass the center

intact, since the exit barrier decreases there. They can then

take part in the secondary stars. For this to be possible, they

must satisfy three following requirements:

i. Preserve proper charge distribution in each star;

ii. Pass successfully the symmetry detection in the stars as

carried out by counting photon oscillations;

iii. Yield the definite output velocity (e.g., equal to the in-

put velocity) to be suitable over a long line of succes-

sive stars.

To fulfill these requirements, we have only two parameters

at our disposal to be controlled over the whole lattice, that

is, the mass and the velocity of the meson at the star entrance.

We guess only much heavier mesons to be met with. Since the

lattice is a ready structure and the slower mesons are just “im-

purities” in it, they will enter the next star with some time lag.

Besides the basic star, there exist only two configurations

having weaker sub-symmetries. Depending on the mass

found for the related foreign particle, one of the sub-symmet-

ries will be ascribed to the τ-meson, and another to the µ-

meson.

In the first sub-symmetry, only one pair of opposite elec-

tron and positron is replaced by the meson/anti-meson pair.

Their diagonal is the natural axis of the star symmetry, since

under the interaction in the star the mesons keep moving

along this axis. The trajectories of the remaining three elec-

trons and three positrons are curvilinear, though confined

pair-wise to three planes (the members of each pair don’t be-

long to a common diagonal of the cube). Then the absolute

values of the Cartesian coordinates of all six electrons/posi-

trons, both along and transverse the axis, will be the same.

We refer to this case as (6:2) sub-symmetry. (In this notation,

the electron/positron star is (8:0) sub-symmetry.) Contrary

to the basic (8:0) case, magnetic part of the interaction is no

longer cancelled on the curved trajectories in stars possess-

ing only sub-symmetries, though the total resulting interac-

tion still leaves the particles on the same planes they would

move under the electric force alone.

In the second sub-symmetry, two identical meson/anti-

meson pairs replace electron-positron pairs. Now all eight

trajectories are curved though confined to the two mutually

orthogonal planes, one of which carries only electrons and

positrons, while another — only mesons and anti-mesons.

Within each of these planes, the absolute values of the ap-

propriately chosen Cartesian coordinates of its particles will

be the same. We refer to this case as (4:4) sub-symmetry. Fol-

lowing the previous argument [2], we ignore the terms with

retarded interaction in the equations describing the motion

of the particles in the star, but radiation reaction of the ac-

celerated particles may be important. However, even rough

estimation of this multiple soft photons radiation will be suf-

ficient to distinguish flavor families, provided the mesons are

much heavier than the electron, and the mesons related to the

two possible sub-symmetries strongly differ in their masses.

As was found [2], the radius of the star is much smaller than

the classical electron radius, still the smallest radius down

to which the photon oscillations are being counted might be

of the order or even larger than the classical radius r0 of the

meson. Therefore, the effect of radiation on the motion of

the star particles should be estimated for the electrons and the

mesons differently though the very motion of the center of the

electron wave packet, which only matters in the photon oscil-

lations counting procedure, might be described classically in

virtue of the Ehrenfest theorem. In so complicated systems as

the stars containing several interacting particles, accurate cal-

culation of radiation would be rather complicated, and, more-

over, it is well known [4] that r0 is the limit of validity of

the electrodynamics, while the trajectories for the finest star

lie well deeper this value. Therefore, QED is needed to deter-

mine single photon radiation of electrons, pair production etc.

in the very strong (even vacuum violating) electric field [5].

However, the motion of the electrons is of interest here only

inasmuch as it influences that of the mesons, and we need not

go into fine details for the electron component of the star. We

thus choose to model radiation of the electrons with an appro-

priate functional factor S that tempers the energy increase of

the accelerated electrons. This factor will depend on a param-

eter q, varying which one can match a solution for the mesons

according to the threshold where the quantum single photon

radiation reaction exceeds the driving force in the star. We

assume that S depends only on the kinetic energy of the elec-

tron via the relativistic factor γe: S = exp[−(γ−2
e − γ−2

ei
)/q2],

where γei is the initial value γe of in the star. So, S = 1 at the

initial moment, while for appropriate solutions the value of q

must be so chosen that its final value γe, f � 5, in accordance

with the charge gauge [2] in the basic (8:0) star unperturbed

by mesons.

The mesons are expected to move unchanged over many

successive stars. Their motion should be analyzed in respect

of the possibility to sustain a regular lattice, that is, of the
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. (1)

repeatability of their initial and final velocities either in each

star or, at least, for a long sequence of successive stars. For

each of the sub-symmetries this possibility depends on the

mass of the related meson. Interaction of the electrons and

the mesons results in that that the motion of the electrons de-

pends on the meson mass as well, hence the ratio of electron

to meson masses might be obtained from our condition of the

whole lattice regularity. Motion of heavy mesons might be

described classically.

Strictly speaking, one has to include explicitly the meson

radiation reaction term in the equation of motion. It would

be convenient however to use, wherever possible, perturba-

tion methods to determine the radiation reaction, provided it

is much less than the driving force: The equation of motion

could be solved for the driving force alone, and then the ra-

diated energy is found using this solution. The final kinetic

energy of the meson is determined by subtracting the radi-

ation loss from its value as obtained before (see, e.g., [4]).

This estimation is certainly valid for a large enough mass,

since the radiation cross section contains inverse square of

the mass value. For this reason, we may use classical, that is,

multiple soft photon emission value for the radiation of heavy

mesons.

2 (6:2) sub-symmetry

In this case, the meson/anti-meson pair still moves along a

straight line, whereas the curved trajectories of the three elec-

tron family pairs confine to three planes intersecting over the

meson axis with the relative angles 2π
3

. It is convenient there-

fore to measure the z coordinate along the meson axis, and to

choose the second coordinate ρ at each electron plane as the

distance from this axis. Then the values of ρ for each particle

of the electron family (each one measured in its own plane)

are equal, and the absolute values of z are the same for all

electrons. In dimensionless variables:

χ =
ct

r0

, ue =
ze

r0

, ve =
ρ

r0

, βeu =
due

dχ
,

βev =
duv

dχ
, uM =

zM

r0

, βM =
duM

dχ
, η =

me

mM

,

γe =
(

1 − β2
eu − β2

ev

)− 1
2
, γM =

(

1 − β2
M

)− 1
2
,

where the subscript e marks electrons, M means mesons, c is

the speed of light. The system of three ODEs describes the

motion of the electrons and the mesons in the star under their

interaction. Using the well-known expression for the field of

a fast moving charge [4], this system can be written as shown

in Eqs. 1 on top of this Page 101.

This system should be numerically solved under the ini-

tial conditions taken from the solution for the basic electron

family [2]: the initial radius of the electrons re,i = 0.24r0, and

γe,i = 3.2. In our variables, these correspond to:

χi = 0 , ue,i =
ri

3r0

, ve,i =
2
√

2ri

3r0

βeu,i =
1

3
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2
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2
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)
1
2
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M,i

)
1
2
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. (2)

In the perturbation approach, the value of γM,i for the regular

lattice should be equal to the final γM, f at the exit of the pre-

ceding star (or a group of stars) as obtained by subtracting the

radiation term γM,rad and the term of the exit potential barrier

γM,ex from the final value of the solution to the system (1).

These terms are:

γM,rad =
2

3
η

∫ χ f

0

dχ

(

dβM

dχ

)2

γ3
M , (3)
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γM,ex � 12−1ηu−1
M, f γ

−2
M,i . (4)

It is assumed in (4) that γM,ex≪ γM, f −γM,i, and uM, f ≪ uM,i.

(The first inequality holds since the deceleration from the

opposite meson is at least an order of magnitude less than

the acceleration from the electrons because of the relativistic

anisotropy of the electric field of fast moving charges.)

Then the value of uM,i is: uM,i =
ri

r0
(2−βM, f ), where βM, f =

(1 − γ−2
M, f

)1/2.

The solution for (1) goes down to the final value re,2 =

0.002r0, that is, (u2
e,2
+ v2

e,2
= 0.002)1/2. This value of re,2

corresponds to the average value of the weak Yukawa-type

potential (instead of re,2 = 0.003r0 found in the charge gauge

procedure for (8:0) case [2]). We assume that the electrons

and positrons disappear at r < re,2. The value of χ f in (3)

should be defined by the condition that the function

re(χ f ) = re,2 for the first time.

The solution must meet the requirement for the meson to

be unrecognized with our method of symmetry detection, i.e.,

that the numbers of the photon oscillations remain equal for

the electron and the meson. To this end, consider the photon

emitted at re(0) = ri and reaching re,1 = re(χe,1) after be-

ing reflected at the star center. Then, χe,1 = (u2
e,i
+ v2

e,i
)1/2+

(u2
e,1
+ v2

e,1
)1/2, where the last member should be taken from

(1). Similarly for the meson: χM,1 = uM,i + uM,1. Neglecting

the small (because rM,1 ≫ rM,2 ≈ rM,i − re,i) difference in the

initial positions, we write the condition for the second photon

not to have enough time to oscillate between the electron and

the center over the first oscillation of the meson as:

(

u2
e,1 + v

2
e,1

)
1
2
+ 0.002 > uM,1 . (5)

This inequality ensures that the electron annihilates

within the time of the first oscillation for the meson. Since the

meson doesn’t annihilate, the opposite inequality preventing

the second photon oscillation for the meson within the time

of the first photon oscillation for the electron is:

uM,1 >
(

u2
e,1 + v

2
e,1

)
1
2
. (6)

Upon solving the system (1) with q = 2, it was found that

only for η = 0.0003 there exists an “equilibrium cycle” that

repeats itself over the series of the stars (possibly with small

shift of γM, f from a mean value in a star to be compensated

with some opposite shift in the next star) under the condi-

tions (5) and (6) for some particular value of γM,i. For γM,i =

5.150408, and uM,i = 0.244567, the system (1) yields γM, f =

5.248322 , γM,i, but already in the next star with uM,i, fol-

lowing from this γM, f : uM,i = 0.244397 (γM,i = 5.248322),

we obtain γM, f = 5.150408, and the solution for the whole

trajectory of the meson repeats itself infinitely. For these two

consecutive stars: (u2
e,1
+ v2

e,1
)1/2 = 0.00437 and 0.003782,

uM,1 = 0.004815 and 0.003785 respectively, so both (5) and

(6) are fulfilled for each of them; uM, f = uM,2 = 0.00214,

(u2
e,1
+ v2

e,1
)1/2 = 0.002, γe, f = 5.280387. According to (3)

and (4), radiation decreases γM, f by only γM,rad ≈ 10−4, and

the exit potential by γM,ex ≈ 10−3. Both are small as com-

pared to the variation in the energy of the meson along its

trajectory:
∣

∣

∣γM, f − γM,i

∣

∣

∣ ≈ 0.05. Hence, our assumption for

deceleration from the exit potential barrier to be negligible

for (6:2) sub-symmetry is reasonable. No acceptable solu-

tions exist for other values of η. Although at each η there is

a value of γM,i, for which the electrons and the mesons meet

at (u2
e,2
+ v2

e,2
)1/2 ≈ uM,2 6 0.002, but γM, f , γM,i, tending

to increase monotonously, when extended over the next stars.

Eventually the electron radius (u2
e,2
+ v2

e,2
)1/2 becomes larger

than the weak interaction threshold 0.002 everywhere on the

trajectory. E.g., for η = 0.00015 this happens at γM,i ≈ 5.46,

while for η = 0.0004 at γM,i ≈ 5.48. (For η = 0.0002, only

(6) is broken.) Then the annihilation of the electrons becomes

impossible, and our lattice will be ruined.

This behavior of the solutions to (1) can be explained as

follows. If in the immediate vicinity of the star center the pos-

itive, say, meson lags with respect to the three nearest elec-

trons, it is accelerated, while the electrons are decelerated to

be overtaken by the meson and vice versa. Which case is re-

alized depends on η and on γM,i. The equilibrium along the

whole series comes from balance in the interaction. If situa-

tion is far from the balance, the meson will move much ahead

or behind the electrons. Then its attraction will not be able

to compensate for the reciprocal repulsion of the electrons,

resulting in the increase of (u2
e,2
+ v2

e,2
)1/2, and this quantity

becomes eventually larger than 0.002.

3 (4:4) sub-symmetry

In this case, electrons and mesons move in two orthogonal

planes intersecting at some axis of the cube (z) that connects

the centers of the pair of its opposite faces. In each of these

planes, the absolute values of the two Cartesian coordinates

of the particles are the same for its four particles — elec-

trons or mesons — due to the (4:4) symmetry. It is convenient

therefore to choose a coordinate frame with the (x) axis in the

electron plane and the (y)axis in the meson plane.

We guess in this case η ≫ 0.0003, since the effect of four

electrons on four mesons is smaller than that of six electrons

on two mesons. Hence, radiation is expected to be important,

since the meson must radiate much more energy with main

contribution coming from the close neighborhood of the star

center. This effect owes to the smaller meson mass as well

as to the curvature of the trajectory, since, given force, trans-

verse acceleration scales as γ−1 while longitudinal one only as

γ−3. Although it was long shown [4, 6] that, in the relativistic

case, the energy radiated by the particle might be even larger

than that received under external acceleration, we cannot use

this result directly. In these references, the accelerating field

was considered given in advance, i.e. independent of the par-

ticle’s motion, whereas in our case back influence of radiation
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S −1 dβeu

dχ
= − 1

4

(

1 − β2
ev

)− 1
2
(

1 − β2
eu

)

γ−3
e u−2

e −
1

4

(

1 − β2
eu

)− 1
2
βeuβevγ

−3
e v
−2
e −

− 1

4

[

ue

(

γ−2
e + β

2
euβ

2
ev + βeuβ

3
ev

)

− ve
(

2βeuβev − β3
euβ

2
ev − β2

euβ
2
ev

)]

γ−3
e

[

u2
e + v

2
e − (ueβev − veβeu)2

]− 3
2
+

+ 2
[

(uM + ue) (1 − βevβMu)
(

1 − β2
eu

)

− ve (1 − βeuβMu) βeuβev

]

γ−1
e γ
−2
M +

+
{

v2eγ
−2
M + w

2
M + (uM + ue)2 −

[

(uM + ue) βMw − wMβMu

]2
}− 3

2
+

+ 2
[

(uM − ue) (1 − βevβMu)
(

1 − β2
eu

)

− ve (1 − βeuβMu) βeuβev

]

×

× γ−1
e γ
−2
M

{

v2eγ
−2
M + w

2
M + (uM − ue)

2 −
[

(uM − ue) βMw − wMβMu

]2
}− 3

2

S −1 dβev

dχ
= − 1

4

{

ueβev (βeu + βev)
(

1 − β2
ev

)

+ ve
[

1 − βev (βeu + βev) (1 − βeuβev)
]

}

γ−3
e ×

×
[

u2
e + v

2
e − (ueβev − veβeu)2

]− 3
2
+

1

4

(

1 − β2
eu

)
1
2
(

1 − β2
ev

)

γ−3
e v
−2
e +

1

4

(

1 − β2
eu

)− 1
2
βeuβevγ

−1
e u−2

e +

+ 2
[

(uM + ue) (1 − βevβMu) βeuβev − ve (1 − βeuβMu)
(

1 − β2
ev

)]

×

× γ−2
M γ
−1
e

{

v2eγ
−2
M + w

2
M + (uM + ue)

2 −
[

(uM + ue) βMw − wMβMu

]2
}− 3

2 −

− 2
[

(uM − ue) (1 − βevβMu) βeuβev − ve (1 − βeuβMu)
(

1 − β2
ev

)]

γ−2
M γ
−1
e ×

×
{

v2eγ
−2
M + w

2
M + (uM − ue)2 −

[

(uM − ue) βMw − wMβMu

]2
}− 3

2

d2βMu

dχ2
=

3

2

(

η−1 dβMu

dχ
− U

)

γ−1
M − 2

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)

×

×
[

dβMu

dχ
− γ−2

M βMw

(

βMu

dβMw

dχ
− βMw

dβMu

dχ

)]

− 2γ−2
M βMu

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)2

d2βMw

dχ2
=

3

2

(

η−1 dβMw

dχ
−W

)

γ−1
M − 2

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)

×

×
[

dβMw

dχ
+ γ−2

M βMu

(

βMu

dβMw

dχ
− βMw

dβMu

dχ

)]

− 2γ−2
M βMu

(

βMu

dβMu

dχ
+ βMw

dβMw

dχ

)2
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, (7)

where the functions U and W are expressed as follows

U = −
1

4

(

1 − β2
Mw

)− 1
2
(

1 − β2
Mu

)

γ−3
M u−2

M −
1

4

(

1 − β2
Mu

)− 1
2
βMuβMwγ

−3
Mww

−2
M −

− 1

4

[

uM

(

γ−2
M + β

2
Muβ

2
Mw + βMuβ

3
Mw

)

− wM

(

2βMuβMw − β3
Muβ

2
Mw

)]

γ−3
M ×

×
[

u2
M + w

2
M − (uMβMw − wMβMu)2

]− 3
2
+ 2

[

(uM + ue) (1 − βMwβeu)
(

1 − β2
Mu

)

− wM (1 − βMuβeu) βMuβMw

]

×

× γ−1
M γ
−2
e

{

w−2
M γ
−2
e + v

2
e + (uM + ue)

2 −
[

(uM + ue) βev − veβeu

]2
}− 3

2 −

− 2
[

(uM − ue) (1 − βMwβeu)
(

1 − β2
Mu

)

− wM (1 − βMuβeu) βMuβMw

]

γ−3
M ×

×
{

w2
M
γ−2

e + v
2
e + (uM − ue)

2 −
[

(ue − uM) βev − veβeu

]2
}− 3

2
,
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W = − 1

4

{

uMβMw (βMu + βMw)
(

1 − β2
Mw

)

+ wM

[

1 − βMw (βMu + βMw) (1 − βMuβMw)
]

}

×

× γ−3
M

[

u2
M + w

2
M − (uMβMw − wMβMu)2

]− 3
2
+

1

4

(

1 − β2
Mu

)
1
2
(

1 − β2
Mw

)

γ−3
M w

−2
M +

+
1

4

(

1 − β2
Mu

)− 1
2
βMuβMwγ

−1
M u−2

M + 2
[

(uM + ue) (1 − βMwβeu) βMuβMw − wM (1 − βMuβeu)
(

1 − β2
Mw

)]

×

× γ−2
e γ
−1
M

{

w2
Mγ
−2
e + v

2
e + (uM + ue)

2 −
[

(uM + ue) βev − veβeu

]2
}− 3

2
+

+ 2
[

(uM − ue) (1 − βMwβeu) βMuβMw − wM (1 − βMuβeu)
(

1 − β2
Mw

)]

×

× γ−2
e γ
−1
M

{

w2
Mγ
−2
e + v

2
e + (uM − ue)

2 −
[

(uM − ue) βev − veβeu

]2
}− 3

2
.

on the field-generating particles is important. We have thus to

include the radiation reaction term explicitly in the equation

of motion. But the value η ≈ 0.005 is just at the bound-

ary of self-contradiction of electrodynamics for the meson at

the weak interaction threshold. Also quantum effects, how-

ever weaker than those for the electron, might alter radiation

there. Moreover, deceleration of the meson at the exit po-

tential barrier coming from other mesons as well as radiation

accompanying this deceleration cannot be neglected now.

However, it would be inadequate merely to introduce a

functional factor like that used above for the electron, because

details of the meson trajectory are now in question. In order to

trace the tendency, we shall instead try to approach the value

η = 0.005 from below, i.e. from larger meson mass.

Again, in dimensionless variables

χ =
ct

r0

, ue =
ze

r0

, ve =
xe

r0

, βeu =
due

dχ
, βev =

dve

dχ
,

γe =
(

1 − β2
eu − β2

ev

)− 1
2
,

uM =
zM

r0

, wM =
yM

r0

, βMu =
duM

dχ
, βMw =

dwM

dχ
,

γM =
(

1 − β2
Mu − β2

Mw

)− 1
2
,

the system of four ODE equations — Eqs. 7 shown in the

previous Page 103, with the functions U and W explained

on the same Page Page 103 and on top of this Page 104 —

describes the relativistic motion of electrons and mesons in

the (4:4) cubic star under their interaction.

This system will be numerically solved under following

initial conditions:

ue,i = uM,i =
ri√
3r0

, ve,i = wM,i =

√

2

3

ri

r0

,

βeu,i =
1
√

3
βe,i , βMu,i =

1
√

3
βM,i , βev,i =

√

2

3
βe,i ,

βMw,i =

√

2

3
βM,i , βe,i =

(

1 − γ−2
e,i

)
1
2
,

γe,i = 3.2, βM,i =
(

1 − γ−2
M,i

)
1
2
.

At the star exit, the contribution of radiation coming from

meson-meson interaction is expected to be rather low. It is

thus convenient to follow the method used in the previous

section in order to separate the radiation part in the total de-

crease of kinetic energy there. So, we solve first the equa-

tions of motion ignoring radiation, and then compute γM,rad

over the confined to a plane meson trajectory corresponding

to this solution:

γM,rad =
2

3
η

∫ χ f

0

dχ















(

dβMu

dχ

)2

+

(

dβMw

dχ

)2

−

−
(

βMw

dβMu

dχ
− βMu

dβMw

dχ

)2














γ3
M .

(8)

The related ODE system is shown in Eqs. 9 on top of the

next Page 104.

Since the lateral displacement of the heavy meson in a

single star is expected to be small, the system (9) should be

solved under the initial condition:

uMi =
rM2√

3
, wMi = rM2

√

2

3
, rM2 =

(

u2
M2 + w

2
M2

)
1
2
, (10)

where rM2 is the final radius of the meson in the accelerating

phase of the star. It was found that the condition (6) holds

only for η > 0.005. With η = 0.005, the equilibrium cycle

looks as follows. (We have to choose q = 1.3 to agree with

the charge gauge condition γe, f ≈ 5 as in [2]). Unlike (6:2)

case, in which the full cycle of returning to the initial state

takes two neighboring stars, now it takes four.

On the accelerating phase of the first star of the cycle:

rM,i = 0.244912; rM,2 = 0.001923; γM,i = 4.927011; γM, f =

5.090523; γe, f = 5.353761. On the decelerating phase: γM, f =

4.925161; γM,rad = 0.014866. Radiation energy decrease (8)

is less than 0.1 of that from the exit potential barrier as found

by subtraction the final energy for the deceleration phase (9)

from that for the acceleration phase (7), the second being

initial for the first. Hence, our approximation is appropri-

ate. On the accelerating phase of the last star of the cy-

cle: rM,i = 0.244921; rM,2 = 0.001934; γM,i = 4.926057;
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. (9)

γM, f = 5.089923; γe, f = 5.411567. On its decelerating phase

again: γM, f = 4.927011. The conditions (5) and (6) are satis-

fied in all four stars of the equilibrium cycle.

Contrary to the (6:2) case, both electron and meson en-

ergies have been found to increase in the close vicinity of

the star center on the acceleration phase. Therefore, for (4:4)

symmetry it is just meson radiation that dominates the mecha-

nism to support equilibrium. An equilibrium cycle satisfying

both (5) and (6) exists also for η > 0.005. Formal solution

gives that only for η > 0.02 the condition (5) is broken. QED

estimation with averaged Coulomb field [5] shows that for

heavy meson (η < 0.02) quantum single photon corrections

for radiation are small. However, classical electrodynamics

is invalid for η < 0.005. Therefore η = 0.005 could only be

accepted as the lowest value compatible with the above equa-

tions. This result by no means undermines the very fact of

correspondence between the lepton families and the cube star

sub-symmetries as detected with photon oscillation counting,

which possesses its own meaning, independent of a particular

theory to specify trajectories.

4 Concluding remarks

However imprecise, the obtained values for η strongly sug-

gest the (6:2) and (4:4) sub-symmetries to be associated ac-

cordingly with the τ−meson (≈ 1.5 GeV/c2, η = 0.0003) and

the meson (≈ 100 MeV/c2, η = 0.005). Our estimations

are reliable because of sufficiently big differences in mass

values between the leptons. In order to find precise values,

more complicated calculations of bremsstrahlung [5] are re-

quired for the star involving many Feynman diagrams for the

mesons, interacting between themselves and with the elec-

trons. Another approximation relates to the assumed sharp

cut-off in the electroweak interaction at re,2.

We point out that the similar analysis might be carried out

for quarks, which correspond to the three subsets of the com-

plementary to the cube 12-particle part of the dodecahedron

star in the full gauge lattice [2].

Although being presented here in the conventional form,

the motion-to-motion gauge is actually coordinate-less, bas-

ing solely on the existence of the top velocity signal and sym-

metrical patterns of particles’ trajectories. The existence of

the flavor families could never be comprehended, unless the

direct motion-to-motion gauge of charge is used, because the

intermediary involving reference systems comprised of

clocks and rods hides some important features of actual mea-

surements. Just the same situation comes about in the weak

interaction [3], where the obstructive role of reference sys-

tems stimulates the appearance of auxiliary “principles” like

gauge invariance with its artificial group structure that can

only explain the already known results of experiments rather

than predict them. As a matter of fact, the very statement

of the basic problem in mechanics, i.e. the contact problem,

must be sufficient to substantiate all principles, including

Lorentz covariance, gauge invariance and so on [7].
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