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Scale-Invariant Models of Natural Oscillations in Chain Systems and Their
Cosmological Significance

Hartmut Müller
E-mail: hm@interscalar.com

In this paper we review scale-invariant models of natural oscillations in chain systems of
harmonic quantum oscillators and derive measurable consequences. Basic model claims
are verified in terms of fundamental particles, the cosmic microwave background and
the solar system. The cosmological significance of some model statements is discussed.

Introduction

In the last 40 years many studies [1] were published which
show that scale invariance (scaling) is a widely distributed
phenomenon discovered in high energy physics [2–4], seis-
mology [5,6], biology [7–9] and stochastic processes of vari-
ous nature [10].

As a property of power laws, scale invariance can be gen-
erated by very different mechanisms. The origin of power law
relations and efforts to observe and validate them is a topic of
research in many fields of science. However, the universal-
ity of scaling may have a mathematical origin that does not
depend on the actual mechanism of manifestation.

In [11] we have shown that scale invariance is a funda-
mental property of natural oscillations in chain systems of
similar harmonic oscillators. In [12] we applied this model
on chain systems of harmonic quantum oscillators. In the
case of a chain of protons as fundamental oscillators, particle
rest masses coincide with the eigenstates of the system. This
is valid not only for hadrons, but for mesons and leptons as
well. Because of scale invariance, chains of electrons produce
similar sets of natural frequencies.

In [13] Andreas Ries has shown that the complete descrip-
tion of elementary particle masses by the model of oscilla-
tions in chain systems is only possible if considering both,
chains of protons and electrons. Furthermore, in [14] he was
able to show that this model allows the prediction of the most
abundant isotope for a given chemical element.

The core claims of scale-invariant models do not depend
on the selection of the fundamental oscillator. Therefore, the
rest mass of the fundamental oscillator can be even smaller
than the electron mass. Consequently, all elementary parti-
cles can be interpreted as eigenstates in a chain system of
harmonic quantum oscillators, in which the rest mass of each
single oscillator goes to zero. This is how the transition of
massless to massive states can be explained [15].

In [16] we have shown that scale-invariant models of nat-
ural oscillations in chain systems of protons also describe the
mass distribution of large celestial bodies in the solar system.

The intention of this article is an adjustment of the basic
claims of our model and an additional verification on funda-
mental particles, the cosmic microwave background and the

solar system. Furthermore, we discuss the cosmological sig-
nificance of some model claims.

1 Methods

Kyril Dombrowski [17] mentioned that oscillating systems
– having the peculiarity to change their own parameters be-
cause of interactions inside the systems – have a tendency to
reach a stable state where the individual oscillator frequen-
cies are interrelated by specific numbers – namely minima of
the rational number density on the number line.

Viktor and Maria Panchelyuga [18] showed that reso-
nance phenomena appear more easily if they belong to max-
ima in the distribution of rational numbers, while maxima in
the distribution of irrational numbers correspond with a high
stability of the system, minimal interaction between parts of
the system and minimal interaction with the surroundings.

In [11] we have shown that in the case of harmonic os-
cillations in chain systems, the set of natural frequencies is
isomorphic to a discrete set of natural logarithms whose val-
ues are rational numbers.

Each real number (rational or irrational) has a biunique
representation as a simple continued fraction. In addition, any
rational number can be represented as a finite continued frac-
tion and any finite continued fraction represents a rational
number [19].

Consequently, the set of natural frequencies of a chain
system of harmonic oscillators corresponds with a set of finite
continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer
numbers: n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canonical
form, the numerator z is equal 1.

However, by means of the Euler equivalent transforma-
tion [20] every continued fraction with partial numerators
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z, 1 can be changed into a continued fraction in the canonical
form with z= 1.

Therefore, we will call the set F of finite continued frac-
tions (1) with z= 1 the “Fundamental Fractal” of natural fre-
quencies in chain systems of harmonic oscillators.

For rational exponents the natural exponential function is
transcendental [21]. Therefore, F is a set of transcenden-
tal numbers that is isomorphic to the set of rational numbers
represented by finite continued fractions. The function of iso-
morphism is the natural logarithm.

It seems that this transcendence and consequently the ir-
rationality of F provides the high stability of the oscillating
chain system because it avoids resonance interaction between
the elements of the system.

2 Projections of the Fundamental Fractal

All elements of the continued fractions F are integers and
can therefore be represented as unique products of prime fac-
tors. Consequently, we can distinguish classes of finite con-
tinued fractions (classes of rational numbers) in dependency
on the divisibility of the numerators and denominators by
prime numbers, as we have shown in [11]. Based on this,
different projections of F can be studied.

Figure 1 demonstrates the formation of the canonical pro-
jection (z= 1). Each vertical line represents a rational number
that is the logarithm of a natural frequency of a chain system
of harmonic oscillators.

Fig. 1: The formation of the canonical projection (z= 1) of the F
on the first layer k= 1 (natural logarithmic representation).

The distribution density increases hyperbolically with
|n j1|. In the range 1< |n j1|< 2 the distribution density is min-
imum. Figure 2 shows that for finite continued fractions (1),
ranges of high distribution density (nodes) arise near recipro-
cal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor points
of the distribution.

All the denominators of the continued fractions F are
(positive and negative) integers. Therefore, the canonical pro-
jection is logarithmically symmetric, as figures 3 and 4 show.

Fig. 2: The canonical projection of the F in the range 0⩽ |n j0|⩽ 1
for k= 2 (natural logarithmic representation).

Fig. 3: The canonical projection of the F in the range 1⩽ |n j1|<∞
for k= 2 (natural logarithmic representation).

Fig. 4: The canonical projection of the F in the range −2⩽ S ⩽ 2
for k= 2 (natural logarithmic representation).

In the following we investigate continued fractions (1)
which meet the Markov [22] convergence condition |n|⩾|z|+1.

Figure 5 illustrates different projections generated by con-
tinued fractions (1) with denominators divisible by 2, 3, 4, . . .
and the corresponding numerators z= 1, 2, 3, . . .

Fig. 5: Different projections generated by continued fractions (1)
with denominators divisible by 2, 3, 4, . . . and corresponding numer-
ators z= 1, 2, 3, . . . .

Figure 5 shows the nodes on the first layer j= 1 and also
the borders of the node ranges, so the gaps are clearly visible.
The borders of the gaps are determined by the alternating con-
tinued fractions [z, 0; z+ 1,− z− 1, z+ 1,− z− 1, . . . ]= 1 and
[z, 0; z− 1,− z+ 1, z− 1,− z+ 1, . . . ]=− 1, for z⩾ 1.

Denominators that are divisible by 3 with z= 2 build the
class of continued fractions (1) that generates the projection
with the smallest gaps. These gaps remain empty even if the
number of layers k increases infinitely.

In the 2/3-projection, free links n j0 of the continued frac-
tions (1) that are divisible by 3 designate the main nodes, de-
nominators divisible by 3 designate subnodes while all the
other denominators designate the borders of gaps (see Fig-
ure 6 and 7).
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Fig. 6: The 2/3-projection of (1) with z= 2, divisible by 3 |n j0|= 3l, (l= 0, 1, 2, . . . ) and denominators divisible by 3 |n jk |= 3d, (d = 1, 2, . . . )
in the range of −4⩽F ⩽ 4).

Fig. 7: The same 2/3-projection like in fig. 6, but in the range of −1⩽F ⩽ 1.

In [23] we have shown that in the 2/3-projection, ranges
of gaps are connected with stochastic properties of natural
oscillations in chain systems of protons. In the current paper
we apply the canonical projection only.

3 Harmonic Scaling

Based on (1), we can now calculate the complete set ω jk of
natural angular frequencies of a chain system of similar har-
monic oscillators, if the fundamental frequency ω00 or any
other natural frequency of the set ω jk is known:

ω jk = ω00 exp (F ) . (2)

Here and in the following, F is considered in its canonical
projection with z= 1. The natural angular oscillation period τ
is defined as the reciprocal of the angular frequency:

τ jk = 1/ω jk . (3)

The complete set of natural angular scale oscillation periods:

τ jk = τ00 exp (F ) . (4)

In [12] we have shown that our model (1) can be applied also
in the case of natural oscillations in chain systems of har-
monic quantum oscillators where the oscillation energy E de-
pends only on the frequency (ℏ being the Planck constant):

E jk = ℏω jk . (5)

Consequently, the natural frequency set and the correspond-
ing set of natural energies are isomorphic, so that chain sys-
tems of harmonic quantum oscillators generate discrete expo-
nential energy series:

E jk = E00 exp (F ) , (6)

where E00 = ℏω00 is the fundamental energy. Because of the
mass-energy equivalence,

m jk = E jk/c2 (7)

the set of natural energies and the corresponding set of natu-
ral masses are isomorphic, so that chain systems of harmonic

quantum oscillators generate discrete exponential series of
masses:

m jk = m00 exp (F ) , (8)

where m00 =ω00 · ℏ/c2 is the fundamental mass.
Finally, the set of natural frequencies corresponds to an

isomorphic set of natural wavelengths (c being the speed of
light in vacuum),

λ jk = c/ω jk (9)
so that chain systems of harmonic quantum oscillators gener-
ate discrete exponential series of natural wavelengths:

λ jk = λ00 exp (F ) , (10)

where λ00 = c/ω00 is the fundamental wavelength.
As a consequence of (3) and (9), the set of natural wave-

lengths and the set of natural oscillation periods in chain sys-
tems of harmonic quantum oscillators coincide with an iso-
morphic set of natural velocities:

v jk = λ jk/τ jk . (11)

Therefore, chain systems of harmonic quantum oscillators
generate discrete exponential series of natural velocities as
well:

v jk = v00 exp (F ) , (12)

where the fundamental velocity v00 = c is the speed of light in
a vacuum.

In relation to the anticipated harmonic exponential series
of wavelengths, velocities, energies and masses as a conse-
quence of harmonic oscillations in chain systems, we propose
the term “harmonic scaling”.

The natural exponential function of a real argument x is
the unique nontrivial function that is its own derivative

d
dx

ex = ex

and therefore its own anti-derivative as well. Because of the
self-similarity of the natural exponential function regarding
its derivatives, any real number, being the result of a mea-
surement, can be thought of as a natural logarithm or as the
logarithm of a logarithm. Therefore, harmonic scaling is not

Hartmut Müller. Scale-Invariant Models of Natural Oscillations in Chain Systems and their Cosmological Significance 191



Volume 13 (2017) PROGRESS IN PHYSICS Issue 4 (October)

limited to exponentiation, but can be extended to tetration,
pentation and other hyperoperations as well. In this case we
will use the term “hyperscaling”.

4 Harmonic Scaling of Fundamental Particles

In [12] we have shown that physical properties of fundamen-
tal particles, for example the proton-to-electron mass ratio or
the vector boson-to-electron mass ratio, can be derived from
eigenstates in chain systems of harmonic quantum oscillators.

In fact, the natural logarithm of the proton/neutron to elec-
tron mass ratio is close to [7; 2] and the logarithm of the
W/Z-boson to proton mass ratio is near [4; 2], so we can as-
sume the equation:

ln (mwz/mpn) = ln (mpn/me) − 3 .

Consequently, the logarithm of the W/Z-boson to electron
mass ratio is 4 1

2 + 7 1
2 = 12:

ln (mwz/me)= 12 ,

where me, mpn, mwz, are the electron, proton/neutron and
W/Z-boson rest masses. As table 1 shows, fundamental parti-
cle rest mass ratios correspond to attractor nodes of F . Here
and in the following we consider the continued fractions (1) in
the canonical form, with the numerator z= 1 and write them
in square brackets.

Table 1: Fundamental particle rest masses and the corresponding
attractor nodes of F , with the electron mass as fundamental. Data
taken from Particle Data Group.

particle particle rest mass m, MeV/c2 F ln(m/me) ln(m/me)−F
H-
boson

125090± 240 [12;2] 12.408 -0.092

Z-
boson

91187.6± 2.1 [12;∞] 12.092 0.092

W-
boson

80385± 15 [12;∞] 11.966 -0.034

neutron 939.565379± 0.000021 [7;2] 7.517 0.017
proton 938.272046± 0.000021 [7;2] 7.515 0.015
electron 0.510998928± 0.000000011 [0;∞] 0.000 0.000

As table 1 shows, the logarithms of fundamental particle
mass ratios are close to integer or half values that are rational
numbers with the smallest possible numerators and denomi-
nators.

However, the natural logarithm of the W/Z-boson to
proton mass ratio is not exactly 4.5, but between 11.966−
− 7.515= 4.451 and 12.092− 7.515= 4.577 that approxi-
mates exp (3/2)= 4.4817. Thus, the properties of fundamen-
tal particle masses (table 1) also support our model of hyper-
scaling.

5 Fundamental Metrology and Planck Units

The electron and the proton are exceptionally stable and
therefore accessible anywhere in the universe. Their lifespan
tops everything that is measurable, exceeding 1029 years for

protons and 1028 years for electrons [24]. In the framework of
the standard theory of particle physics, the electron is stable
because it is the least massive particle with non-zero elec-
tric charge. Its decay would violate charge conservation [25].
The proton is stable, because it is the lightest baryon and the
baryon number is conserved as well. Therefore, the proton-
to-electron mass ratio can be understood as a fundamental
physical constant.

These unique properties of electrons and protons predes-
tinate their physical characteristics as fundamental units. Ta-
ble 2 shows the basic set of electron and proton units that can
be considered as a fundamental metrology (c is the speed of
light in a vacuum, ℏ is the Planck constant, kB is the Boltz-
mann constant).

Table 2: The basic set of physical properties of the electron and pro-
ton. Data taken from Particle Data Group. Frequencies, oscillation
periods, temperatures and the proton wavelength are calculated.

property electron proton

mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E =mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω= E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

oscillation period
τ= 1/ω

1.28808867 · 10−21s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

temperature
T =mc2/kB

5.9298 · 109 K 1.08881 · 1013 m

In [15] we have shown that the Planck scale corresponds
to a main attractor node of F and consequently, Planck units
[26] are completely compatible with the fundamental metrol-
ogy (tab. 2).

Originally proposed in 1899 by Max Planck, these units
are also known as natural units, because the origin of their
definition comes only from properties of nature and not from
any human construct.

Max Planck wrote [27] that these units, “regardless of any
particular bodies or substances, retain their importance for all
times and for all cultures, including alien and non-human, and
can therefore be called natural units of measurement”. Planck
units are based only on the properties of space-time.

In fact, the logarithm of the Planck-to-proton mass ration
is near the node [44;∞] of the F :

ln
(

mPlanck

mproton

)
= ln

(
2.17647 · 10−8

1.6726219 · 10−27

)
= 44.012. (13)

This fact does not only support our model (1), but allows us
to derive the proton rest mass from the fundamental physical
constants c, ℏ, G:

mproton = exp(−44)(ℏc/G)1/2 . (14)

In 1899, Max Planck noted that with his discovery of the
quantum of action, sufficient fundamental constants were now
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Fig. 8: The correspondence between electron-calibrated attractor nodes [m j0] and proton-calibrated attractor nodes [n j0] of F in its canon-
ical projection.

Fig. 9: The correspondence of electron-calibrated subnodes [m j0; m j1] to proton-calibrated subnodes [n j0; n j1] on the first layer of F in the
canonical projection.

Fig. 10: The correspondence of the electron-calibrated F (above) to the proton-calibrated F (below) in the 2/3-projection.

known to define universal units for length, time, mass, and
temperature.

This equation (14) may well be of cosmological signif-
icance, because it means that the values of proton and the
electron rest masses are equally fundamental properties of
space-time as are the speed of light, the Planck constant and
the gravitational constant.

6 Cosmic Microwave Background

CMB data is critical to cosmology since any proposed model
of the universe must explain this radiation. Within our model,
the CMB can be understood as an eigenstate in a chain system
of oscillating protons, because the black body temperature of
the CMB corresponds to the main attractor node [−29;∞] of
the F calibrated on the proton temperature (table 2):

ln
(

TCMB

Tproton

)
= ln

(
2.726 K

1.08881 · 1013 K

)
= −29.016. (15)

7 Global Scaling

We hypothesise that harmonic scaling is a global pheno-
menon and continues in all scales, following the fundamen-
tal fractal (1) that is calibrated by this fundamental metrol-
ogy (table 2). This hypothesis we have called ‘Global Scal-
ing’ [23].

8 Calibration of the Fundamental Fractal

Table 1 shows that the natural logarithm of the proton-to-
electron mass ratio is approximately 7.5 and consequently,
the F calibrated on the proton will be shifted by 7.5 logarith-
mic units relative to the F calibrated on the electron. Figure 8
demonstrates this situation in the canonical projection.

As a consequence, all integer logarithms (n j1 =∞) of the
proton F correspond to half logarithms (m j1 =± 2) of the
electron F and vice versa. In addition, the Diophantine equa-
tion (18) describes the correspondence of proton-calibrated
subnodes [n j0; n j1] with electron-calibrated subnodes [m j0;
m j1] on the first layer k= 1 of F :

1
n j1
+

1
m j1
=

1
2
. (16)

Only three pairs (n j1, m j1) of integers are solutions to this
equation: (4, 4), (3, 6) and (6, 3). Figure 9 demonstrates this
correspondence.

In fact, if a process property corresponds to a half loga-
rithm (m j1 = ± 2) of the electron calibrated F it also corre-
sponds to an integer logarithm (n j1 = ∞) of the proton cali-
brated F . Consequently, we must treat half logarithms and
integer logarithms with equal (highest) priority. Furthermore,
subnodes that satisfy the equation (16) are of high signifi-
cance because the subnodes m j1=±3, m j1=±4 and m j1=±6
of the electron F coincide with the subnodes n j1=±6, n j1=±4
and n j1 =± 3 of the proton F . It is likely that this correspon-
dence amplifies the attractor effect of these subnodes.

As figure 10 shows, in the 2/3-projection, the electron-
based F (above) fills the empty intervals 3l + 1 ⩽ S ⩽ 3l + 2
(l = 0, 1, 2, . . . ) in the proton-based F (below). Furthermore,
in the intervals 3l+ 1/2⩽ S ⩽ 3l+ 1 (l= 0, 1, 2, . . . ) the pro-
ton F overlaps with the electron F . In the 2/3-projection,
the subnodes [2, n j0; 3,−6] and [2, n j0;−3, 6] in the logarith-
mic center of the overlapping area are the only nodes that are
common to both the proton-based and electron-based F .

In [23] we have applied the 2/3-projection on the Solar
system. In the following, we will test our hypothesis of global
scaling on the Solar system applying the canonical projection.
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9 Applying Global Scaling on the Solar System

In 2010 we have shown [16] that the masses of large celes-
tial bodies in the Solar system continue the scale-invariant
sequence of fundamental particle rest masses (see table 1),
corresponding with main attractor nodes of the fundamental
fractal (1).

If we consider the Solar system as still evolving – at least
in terms of small body collisions and matter exchanges with
neighbouring systems – the expected attractor effect of nodes
suggests applying F for the prediction of evolutionary trends.

Yet, the existence of stable orbits and large celestial bod-
ies with stable rotation periods suggests testing our hypothe-
sis of global scaling on the Solar system. Let us begin with
the most noticeable examples.

The Sun

The current amount of the Solar mass supports our hypothesis
of global scaling, because it corresponds to a main attractor
node of the electron-calibrated F (8). In fact, the natural log-
arithm of the Sun-to-electron mass ratio is close to an integer
number:

ln
(

MSun

melectron

)
= ln

(
1.9884 · 1030 kg

9.10938356 · 10−31 kg

)
= 138.936.

Also, the Solar radius corresponds to a main attractor node of
the electron F (10):

ln
(

RSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945.

The Solar sidereal rotation period is in between τmin = 24.5
days at the equator and τmax = 34.4 days at the poles. The
canonical projection of the electron F (4) shows that the
Solar rotation period varies between the main attractor node
[63;∞] and its nearest significant subnode [63;−3]:

ln
(
τmax

τelectron

)
= ln

(
34.4 · 86164 s

1.28808867 · 10−21 s

)
= 63.003 ,

ln
(
τmin

τelectron

)
= ln

(
24.5 · 86164 s

1.28808867 · 10−21 s

)
= 62.664 .

Jupiter

Let’s start with Jupiter’s body mass:

ln
(

MJupiter

melectron

)
= ln

(
1.8986 · 1027 kg

9.10938356 · 10−31 kg

)
= 131.981

we can see that the Jupiter body mass corresponds to the main
attractor node [132; ∞] of the electron F (8) and within our
model, the body mass of Jupiter MJupiter can be calculated
from the Solar Mass MSun, by simply dividing it seven times
by the Euler number e= 2.71828 . . . :

MJupiter =
MSun

exp (7)
. (17)

Jupiter’s body radius corresponds to the significant subnode
[47;−3] of the electronF (10):

ln
(

RJupiter

λelectron

)
= ln

(
7.1492 · 107 m

3.8615926764 · 10−13 m

)
= 46.668 .

The sidereal rotation period of Jupiter is 9.925 hours and cor-
responds with the main attractor node [66;∞] of the proton
F (4):

ln
(
τJupiter

τproton

)
= ln

(
9.925 · 3600 s

7.01515 · 10−25 s

)
= 66.100 .

In contrast to rotation as angular movement, the location of a
celestial body in the Solar system in orbital movement
changes permanently. Furthermore, in the case of non-zero
eccentricity, the angular velocity of orbital movement is not
constant. Therefore, we expect that the orbital periods coin-
cide with attractor nodes of the F (4) with the electron oscil-
lation period 2πτe as the fundamental. For example, Jupiter’s
orbital period of 4332.59 days fulfils the conditions of global
scaling very precisely:

ln
(

TJupiter

2πτelectron

)
= ln

(
4332.59 · 86164 s

8.0932998 · 10−21 s

)
= 66.001.

When the logarithm of the sidereal rotation period of Jupiter
slows down to [66;∞], the orbital-to-rotation period ratio of
Jupiter can be described by the equation:

TJupiter

τJupiter
= 2π

τelectron

τproton
. (18)

The orbital velocity of Jupiter is between vmin = 12.44 and
vmax=13.72 km/s. This velocity clearly approximates the main
attractor node [−10;∞] of the F calibrated on the speed of
light (12):

ln
(
vmax

c

)
= ln

(
13720 m/s

299792458 m/s

)
= −9.992,

ln
(
vmin

c

)
= ln

(
12440 m/s

299792458 m/s

)
= −10.090.

Consequently, the orbital distance of Jupiter between Peri-
helion= 4.95029 and Aphelion= 5.45492 astronomical units
approximates the main attractor node [56;∞] of the electron-
calibrated F (10):

ln
(

AJupiter

λelectron

)
= ln

(
5.45492 · 149597870700 m

3.8615926764 · 10−13 m

)
= 56.011,

ln
(

PJupiter

λelectron

)
= ln

(
4.95029 · 149597870700 m

3.8615926764 · 10−13 m

)
= 55.914.

By the way, the masses of Jupiter’s largest moons fulfil the
condition of global scaling as well. For example, the body

194 Hartmut Müller. Scale-Invariant Models of Natural Oscillations in Chain Systems and their Cosmological Significance



Issue 4 (October) PROGRESS IN PHYSICS Volume 13 (2017)

mass of Ganymede fits perfectly with the main node [115;∞]
of the proton F (8):

ln
(

MGanymede

mproton

)
= ln

(
1.4819 · 1023 kg

1.672621 · 10−27 kg

)
= 115.009.

On the other hand, the body mass of Io corresponds with the
significant subnode [114; 2]:

ln
(

MIo

mproton

)
= ln

(
8.9319 · 1022 kg

1.672621 · 10−27 kg

)
= 114.502.

Venus

The morning star is another impressive example of global
scaling. Like the Sun or Jupiter, the body mass of Venus cor-
responds to a main attractor node of the electron F (8):

ln
(

MVenus

melectron

)
= ln

(
4.8675 · 1024 kg

9.10938356 · 10−31 kg

)
= 126.015.

Although the rotation of Venus is reverse, its rotation pe-
riod of 5816.66728 hours fits perfectly with the main attractor
node [65;∞] of the electron calibrated F (4):

ln
(
τVenus

τelectron

)
= ln

(
5816.66728 · 3600 s
1.28808867 · 10−21 s

)
= 64.958.

The sidereal orbital period of Venus of 224.701 days fulfils
the condition of global scaling as well:

ln
(

TVenus

2πτelectron

)
= ln

(
224.701 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 63.042.

The orbital velocity of Venus (vmin = 34.79 and vmax =

= 35.26 km/s) corresponds well to the main attractor node
[−9;∞] of the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
35260 m/s

299792458 m/s

)
= −9.048,

ln
(
vmin

c

)
= ln

(
34790 m/s

299792458 m/s

)
= −9.062.

The orbital distance of Venus (Perihelion=0.71844 and Aphe-
lion= 0.728213 astronomical units) corresponds precisely to
the main attractor node [54;∞] of the electron calibrated
F (10):

ln
(

AVenus

λelectron

)
= ln

(
0.728213 · 149597870700 m

3.8615926764 · 10−13 m

)
= 53.997,

ln
(

PVenus

λelectron

)
= ln

(
0.718440 · 149597870700 m

3.8615926764 · 10−13 m

)
= 53.984.

The current body radius of Venus corresponds with the sub-
node [44; 5] of the electron F (10):

ln
(

RVenus

λelectron

)
= ln

(
6.053 · 106 m

3.8615926764 · 10−13 m

)
= 44.199.

However, its vicinity to the significant subnode [44; 4] gives
reason to expect that Venus is still growing.

Mars

Again, the body mass of Mars corresponds to a main attractor
node of the electron F (8):

ln
(

MMars

melectron

)
= ln

(
6.4171 · 1023 kg

9.10938356 · 10−31 kg

)
= 123.989.

The sidereal rotation period of Mars is 24.62278 hours and
coincides perfectly to the main node [67;∞] of the proton
F (4):

ln
(
τMars

τproton

)
= ln

(
24.62278 · 3600 s
7.01515 · 10−25 s

)
= 67.008.

The orbital velocity of Mars is between 21.97 and 26.50 km/s,
approximating the subnode [−9;−2] of the speed of light cal-
ibrated F (12):

ln
(
vmax

c

)
= ln

(
26500 m/s

299792458 m/s

)
= −9.334,

ln
(
vmin

c

)
= ln

(
21970 m/s

299792458 m/s

)
= −9.521.

In addition, the orbital period of Mars 686.971 days meets
precisely the condition of global scaling:

ln
(

TMars

2πτelectron

)
= ln

(
686.971 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 65.997.

The orbital distance of Mars (Perihelion= 1.3814 and Aphe-
lion= 1.6660 astronomical units) approximates the signifi-
cant subnode [55;−4] of the electron F (10):

ln
(

AMars

λelectron

)
= ln

(
1.6660 · 149597870700 m
3.8615926764 · 10−13 m

)
= 54.825,

ln
(

PMars

λelectron

)
= ln

(
1.3814 · 149597870700 m
3.8615926764 · 10−13 m

)
= 54.637.

The current body radius of Mars is close to the significant
subnode [44;−3] of the F (10):

ln
(

RMars

λelectron

)
= ln

(
3.396 · 106 m

3.8615926764 · 10−13 m

)
= 43.621.

It is therefore likely that Mars, too, is still growing. From this
point of view, the large Martian canyon (Valles Marineris) can
be interpreted as a sign of crustal swelling [28].

Earth

The current mass of the Earth corresponds to the significant
subnode [126; 4] of the electron F (8):

ln
(

MEarth

melectron

)
= ln

(
5.97237 · 1024 kg

9.10938356 · 10−31 kg

)
= 126.220.

Hence, we can expect that the Earth is slightly increasing its
mass.
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The body radius of the Earth approximates precisely the
significant subnode [44; 4] of the electron F (10):

ln
(

REarth equator

λelectron

)
= ln

(
6.378 · 103 m

3.8615926764 · 10−13 m

)
= 44.251,

ln
(

REarth pole

λelectron

)
= ln

(
6.357 · 103 m

3.8615926764 · 10−13 m

)
= 44.248.

The sidereal rotation period of the Earth is 23.93444 hours
and is located very close to the main node [67;∞] in the pro-
ton F (4):

ln
(
τEarth

τproton

)
= ln

(
23.93444 · 3600 s
7.01515 · 10−25 s

)
= 66.980,

Therefore, we can expect that the rotation period of the Earth
is also slightly increasing. Empirical studies [29] confirm the
correlation between body mass and rotation period.

Earth’s orbital period of 365.256363 days is close to the
main attractor node [71] of the proton-based F (4):

ln
(

TEarth

2πτproton

)
= ln

(
365.256363 · 86164 s
2π · 7.01515 · 10−25 s

)
= 71.043.

Earth’s orbital velocity is between vmin = 29.29 and vmax =

= 30.29 km/s, approximating the significant subnode [−9; 4]
of the speed of light-based F (12):

ln
(
vmax

c

)
= ln

(
30290 m/s

299792458 m/s

)
= −9.200,

ln
(
vmin

c

)
= ln

(
29290 m/s

299792458 m/s

)
= −9.234,

The orbital distance of the Earth (Perihelion = 0.9832687 and
Aphelion = 1.01673 astronomical units) corresponds to the
significant subnode [54; 3] of the electron-based F (10):

ln
(

AEarth

λelectron

)
= ln

(
1.0167300 · 149597870700 m

3.8615926764 · 10−13 m

)
= 54.331,

ln
(

PEarth

λelectron

)
= ln

(
0.9832687 · 149597870700 m

3.8615926764 · 10−13 m

)
= 54.297.

Mercury

Mercury’s body mass is close to the significant subnode
[123; 3] of the electron F (8):

ln
(

MMercury

melectron

)
= ln

(
3.3011 · 1023 kg

9.10938356 · 10−31 kg

)
= 123.324.

Its body radius is close to the significant subnode [43; 3] of
the electron F (10):

ln
(

RMercury

λelectron

)
= ln

(
2.44 · 103 m

3.8615926764 · 10−13 m

)
= 43.290.

So we can expect that Mercury is slightly increasing its mass
and size. The sidereal rotation period of Mercury is 1407.5
hours and corresponds to the main attractor node [71;∞] of
the proton F (4):

ln
(
τMercury

τproton

)
= ln

(
1407.5 · 3600 s

7.01515 · 10−25 s

)
= 71.054.

The sidereal orbital period of Mercury of 87.9691 days is
close to the main attractor node [62;∞] of the electron F (4):

ln
(

TMercury

2πτelectron

)
= ln

(
87.9691 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 62.104.

The orbital velocity of Mercury oscillates between the main
attractor node [−9;∞] and the significant subnode [−9; 2] of
the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
58980 m/s

299792458 m/s

)
= −8.534,

ln
(
vmin

c

)
= ln

(
38860 m/s

299792458 m/s

)
= −8.951.

Mercury’s Aphelion corresponds to the main attractor node
[61;∞] of the proton calibrated F (10):

ln
(

AMercury

λproton

)
= ln

(
0.466697 · 149597870700 m

2.1030891 · 10−16 m

)
= 61.067.

Saturn

Saturn’s body mass is close to the significant subnode [131;
−4] of the electron calibrated F (8),

ln
(

MSaturn

melectron

)
= ln

(
5.6836 · 1023 kg

9.10938356 · 10−31 kg

)
= 130.776

so we suspect that Saturn is actually losing mass and that its
ring system is part of the loss process.

The sidereal rotation period of Saturn is 10.55 hours and
corresponds to the significant subnode [59;−3] of the electron
F (4):

ln
(
τSaturn

τelectron

)
= ln

(
10.55 · 3600 s

1.28808867 · 10−21 s

)
= 58.646.

Therefore, we may expect that Saturn is slightly slowing
down its rotation. The orbital period of Saturn of 10759.22
days corresponds to the main attractor node [67;∞] of the
electron F (4):

ln
(

TSaturn

2πτelectron

)
= ln

(
10759.22 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 66.911.

Therefore, we may predict that Saturn is slightly increasing
its orbit.
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The current orbital velocity of Saturn is between 9.09 and
10.18 km/s, approximating the significant subnode [−10; 3]
of the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
10180 m/s

299792458 m/s

)
= −10.290,

ln
(
vmin

c

)
= ln

(
9090 m/s

299792458 m/s

)
= −10.404.

The orbital distance of Saturn is between Perihelion= 9.024
and Aphelion=10.086 astronomical units, oscillating between
the significant subnodes [57;−2] and [57;−3] of the electron
F (10):

ln
(

ASaturn

λelectron

)
= ln

(
10.086 · 149597870700 m
3.8615926764 · 10−13 m

)
= 56.625,

ln
(

PSaturn

λelectron

)
= ln

(
9.024 · 149597870700 m
3.8615926764 · 10−13 m

)
= 56.514.

Saturn’s equatorial body radius is very close to the significant
subnode [46; 2] of the electron F (10):

ln
(

RSaturn

λelectron

)
= ln

(
6.0268 · 107 m

3.8615926764 · 10−13 m

)
= 46.497

and consequently, to the main attractor node [54;∞] of the
proton F (10) as well:

ln
(

RSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.012.

Furthermore, Titan’s body mass is near the main node [115;
∞] of the proton F (8):

ln
(

MTitan

mproton

)
= ln

(
1.3452 · 1023 kg

1.672621 · 10−27 kg

)
= 114.912.

Uranus

To reach the nearby main attractor node [129;∞] of the elec-
tron-based F (8), Uranus must increase its body mass by ap-
prox. 1/10 logarithmic units:

ln
(

MUranus

melectron

)
= ln

(
8.681 · 1025 kg

9.10938356 · 10−31 kg

)
= 128.897.

The orbital period of Uranus of 30688.5 days corresponds to
the main attractor node [68;∞] of the electron-based F (4):

ln
(

TUranus

2πτelectron

)
= ln

(
30688.5 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 67.959,

Like Neptune, the body radius of Uranus is close to the sig-
nificant subnode [46;−3] of the electron F (10):

ln
(

RUranus

λelectron

)
= ln

(
2.5559 · 107 m

3.8615926764 · 10−13 m

)
= 45.639.

We may therefore expect that Uranus, like Neptune, is slightly
swelling.

The orbital distance of Uranus (Perihelion= 18.33 and
Aphelion= 20.11 astronomical units) approximates the sig-
nificant subnode [57; 4] of the electron F (10):

ln
(

AUranus

λelectron

)
= ln

(
20.11 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.315,

ln
(

PUranus

λelectron

)
= ln

(
18.33 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.223.

The orbital velocity of Uranus is between 6.49 and 7.11 km/s,
approximating the significant subnode [−11; 3] of the speed
of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
7110 m/s

299792458 m/s

)
= −10.741,

ln
(
vmin

c

)
= ln

(
6490 m/s

299792458 m/s

)
= −10.649.

The sidereal rotation period of Uranus is 17.24 hours and
corresponds to the significant subnode [67;−3] of the proton
F (4):

ln
(
τUranus

τproton

)
= ln

(
17.24 · 3600 s

7.01515 · 10−25 s

)
= 66.652.

Therefore,we can expect that Uranus is slightly slowing
down its rotation.

Neptune

Neptune’s body mass corresponds to the main attractor node
[129;∞] of the electron calibrated F (8):

ln
(

MNeptune

melectron

)
= ln

(
1.0243 · 1026 kg

9.10938356 · 10−31 kg

)
= 129.062.

The sidereal rotation period of Neptune is 16.11 hours and
coincides perfectly with the main attractor node [59;∞] of
the electron-calibrated F (4):

ln
(
τNeptune

τelectron

)
= ln

(
16.11 · 3600 s

1.28808867 · 10−21 s

)
= 59.069.

The orbital velocity of Neptune is between 5.37 and 5.50
km/s, close to the main node [−11;∞] of the speed of light
calibrated F (12):

ln
(
vmax

c

)
= ln

(
5500 m/s

299792458 m/s

)
= −10.930,

ln
(
vmin

c

)
= ln

(
5370 m/s

299792458 m/s

)
= −10.906.
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Neptune’s current orbital distance (Perihelion= 29.81 and
Aphelion= 30.33 astronomical units) corresponds to the sig-
nificant subnode [58;−4] of the electron-calibrated F (10):

ln
(

ANeptune

λelectron

)
= ln

(
30.33 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.726,

ln
(

PNeptune

λelectron

)
= ln

(
29.81 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.709.

Because of the assumed attractor effect of the main node
[−11;∞] of the F (12), we can expect that the logarithm of
Neptune’s orbital velocity should decrease by nearly 1/10. At
the same time, the logarithm of Neptune’s orbital distance
should increase by almost 1/20 due to the attractor effect of
the significant subnode [58;−4] of the F (10). This trend
forecast agrees with the Kepler laws: for circular Solar or-
bits, the orbital velocity of a planet changes with the square
root of its orbital distance.

In addition, Neptune’s orbital period of 60182 days is
close to the significant subnode [69;−3] of the electron F (4):

ln
(

TNeptune

2πτelectron

)
= ln

(
60182 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 68.632.

This value supports our trend estimation that Neptune’s orbit
is slightly growing.

The current body radius of Neptune is close to the signif-
icant subnode [46;−3] of F (10):

ln
(

RNeptune

λelectron

)
= ln

(
2.4764 · 107 m

3.8615926764 · 10−13 m

)
= 45.607.

And so, we can expect that Neptune is still swelling.

Pluto

Although Pluto is no longer considered a planet, its body
mass corresponds well with the main attractor node [120;∞]
of the electron F (8):

ln
(

MPluto

melectron

)
= ln

(
1.305 · 1022 kg

9.10938356 · 10−31 kg

)
= 120.094.

The orbital period of Pluto of 90560 days corresponds to the
main attractor node [69;∞] of the electron F (4):

ln
(

TPluto

2πτelectron

)
= ln

(
90560 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 69.044.

The sidereal rotation period of Pluto is 152.87496 hours and
corresponds to the significant subnode [61; 3] of the electron-
calibrated F (4):

ln
(
τPluto

τelectron

)
= ln

(
152.87496 · 3600 s

1.28808867 · 10−21 s

)
= 61.319.

Therefore, we can expect that Pluto is slightly slowing down
in its rotation.

The orbital velocity of Pluto oscillates between 3.71 and
6.10 km/s, approximating the main attractor node [−11;∞] of
the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
6100 m/s

299792458 m/s

)
= −10.803,

ln
(
vmin

c

)
= ln

(
3710 m/s

299792458 m/s

)
= −11.300.

The orbital distance of Pluto (Perihelion= 29.656 and Aphe-
lion= 49.319 astronomical units) approximates the main at-
tractor node [58;∞] of the electron-calibrated F (10):

ln
(

APluto

λelectron

)
= ln

(
49.319 · 149597870700 m
3.8615926764 · 10−13 m

)
= 58.212,

ln
(

PPluto

λelectron

)
= ln

(
29.656 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.704.

The body radius of Pluto 1187± 7 km is close to the signifi-
cant subnode [42; 2] of the electron-calibrated F (10),

ln
(

RPluto

λelectron

)
= ln

(
1187 · 106 m

3.8615926764 · 10−13 m

)
= 42.570,

which is also close to the main attractor node [50;∞] of the
proton-calibrated F (10):

ln
(

RPluto

λproton

)
= ln

(
1187 · 106 m

2.1030891 · 10−16 m

)
= 50.085.

Hence, we can expect that Pluto is slightly shrinking. This
prognosis matches with new findings of surface-atmosphere
interactions and mass wasting processes [30] on Pluto.

By the way, also Charon’s body mass fits with the main
node [118;∞] of the electron F (8):

ln
(

MCharon

melectron

)
= ln

(
1.587 · 1021 kg

9.10938356 · 10−31 kg

)
= 117.944.

In conclusion, table 3 gives an overview of the current posi-
tions in the electron calibrated F (4), (8), (10), and (12) of the
Sun and the planets (including Pluto) regarding their masses,
sizes, rotation, orbital distances, periods and velocities.

Table 3 shows that our model (1) allows to see a connec-
tion between the stability of the Solar system and the stability
of electron and proton. Jupiter, Neptune, Venus and Pluto oc-
cupy mostly main attractor nodes of the electron calibrated
fundamental fractal F and therefore they can be understood
as electron determined factors of stability in the Solar sys-
tem. It is interesting that also the Sun occupies main nodes
of the electron F . Considering the coincidence of half log-
arithms in the electron F with integer logarithms (main at-
tractor nodes) of the proton F , the stability of Earth’s rota-
tion and orbit seems connected with the stability of the pro-
ton. Furthermore, Earth’s mass and radius occupy the subn-
ode n1 = 4 that is maximum distant from any main attractor
node of the F . This position could be connected with some
optimum of flexibility, if we consider the main nodes as is-
lands of stability.
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Table 3: The current positions in the electron calibrated F (4), (8),
(10) and (12) of the largest bodies regarding their masses, sizes, ro-
tation, orbital distances, periods and velocities. In the cases of large
eccentricity∗, the logarithmically average position is indicated.

celestial
body

mass in
F (8)

radius in
F (10)

rotation
period
inF (4)

orbital
period in
inF (4)

orbital
distance
inF (10)

orbital
velocity
inF (12)

Sun [139;∞] [49;∞] [63;∞]
Jupiter [132;∞] [47; −3] [58; 2] [66;∞] [56;∞] [−10; ∞]
Saturn [131;−4] [46; 2] [59; −3] [67;∞] [56; 2] [−10; −3]
Neptune [129;∞] [46; -3] [59; ∞] [69; −3] [58; −4] [−11; ∞]
Uranus [129;∞] [46; -3] [59; 6] [68;∞] [57; 4] [−11; 3]
Earth [126; 4] [44; 4] [59; 2] [63; 2] [54; 3] [−9; −4]
Venus [126;∞] [44; 4] [65;∞] [63;∞] [54;∞] [-9;∞]
Mars [124;∞] [44; −3] [59; 2] [64; 6] [55; −4] [−9; −2]
Mercury [123; 3] [43; 3] [63; 2] [62; 6] [53; 3]∗ [−9; 3]∗

Pluto [120;∞] [42; 2] [61; 3] [69;∞] [58;∞]∗ [−11;∞]∗

Resume

Properties of fundamental particles, for example the proton-
to-electron mass ratio or the vector boson-to-electron mass
ratio (table 1), support our scale-invariant model (1) of eigen-
states in chain systems of harmonic quantum oscillators and
have allowed us to derive the proton rest mass from funda-
mental physical constants (14). In addition, the cosmic mi-
crowave background can be interpreted as an eigenstate of a
chain system of oscillating protons (15).

In our scale-invariant model, physical properties of ce-
lestial bodies such as mass, size, rotation and orbital period
can be understood as macroscopic quantized eigenstates of
chain systems of oscillating protons and electrons. This un-
derstanding can be applied to evolutionary trend prognosis of
the Solar system but may be of cosmological significance as
well. Conceivably, the observable exponential expansion of
the universe is a consequence of the scale-invariance of the
fundamental fractal (1).
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The present paper is devoted to the analysis of different versions of extended Lorentz
transformations, proposed for reference frames moving with the velocity, greater then
the velocity of light. In particular we point out some errors of individual authors in this
field.

This work is connected with the theory of tachyon move-
ment. Research in this direction were initiated in the pa-
pers [1, 2] more than 50 years ago. Then, in the papers of
E. Recami, V. Olkhovsky and R. Goldoni [3–5], the extended
Lorentz transformations for reference frames, moving with
the velocity, greater then the velocity of light c were pro-
posed. Latter the above extended Lorentz transformations
were rediscovered in [6, 7]. The ideas of E. Recami, V. Olk-
hovsky and R. Goldoni are still relevant in our time. In par-
ticular B. Cox and J. Hill published in [7] a new and elegant
way to deduce the formulas of E. Recami, V. Olkhovsky and
R. Goldoni’s extended Lorentz transformations. Also in pa-
per [8] the extended Lorentz transformations are obtained for
the case, where the space of geometrical coordinates may be
any real Hilbert space of any dimension, including infinity.
Application of the E. Recami, V. Olkhovsky and R. Goldoni’s
extended Lorentz transformations to the problem of spinless
tachyon localization can be found in [9].

In the paper [10] author tries to obtain several variants
of new extended superluminal Lorentz transformations, dif-
ferent from transforms obtained by E. Recami, V. Olkhovsky
and R. Goldoni. It should be emphasized, that the paper [10],
together with incorrect statements, contains also valuable new
results. For example, nonlinear extended Lorentz transforma-
tions, proposed in [10], may be applied in the theory of kine-
matic changeable sets [11] for construction some interesting
examples or counterexamples. Now we focus on errors, com-
mitted by the author of [10].

At first view, the coordinate transformations (3)–(4) and
(9)–(10) from [10] look like as new. But, actually, the for-
mulas (3)–(4) and (9)–(10) from [10] are some, not quite cor-
rect, representations for well-known classical Lorentz trans-
formations. Hence, these transformations can not be coor-
dinate transformations for reference frames moving with the
superluminal velocity.

For example, let us analyze in details the transformations
(3)–(4) from [10] for the case of one space dimension:

x′ = γ(v) (x − v f (v)t) (a)

t′ = γ(v)
(
t − v f (v)x

c2

)
, (b)

where (x, t) are the space-time coordinates of any point in the
fixed reference frame l and (x′, t′) are the space-time coordi-
nates of this point in the moving frame l′.

According to [10], the function f (v) may be any real func-
tion, satisfying the following conditions:

1. f (v) > 0, v ∈ R and f (0) = 1;
2. f (v) is even (that is f (−v) = f (v), v ∈ R);

The multiplier γ(v) in (a)–(b) is connected with the
function f by the formula,

γ(v) =
(
1 − v

2 f 2(v)
c2

)−1/2

.

Thus, the following condition must be satisfied:
3. The transformations (a)–(b) are defined for such values
v ∈ R, for which the inequality |v| f (v) < c is performed.

In the paper [10], the parameter v is treated as the ve-
locity of the moving reference frame l′. Thus, to in-
clude the subluminal diapason into the set of “allowed
velocities”, we may apply following condition:

4. v f (v) < c for 0 < v < c.

Note, that the condition 4 is not strictly necessary, and in
the analysis of the transformations (a)–(b) we take into ac-
count only the conditions 1–3.

According to the paper [10], the parameter v in transfor-
mations (a)–(b) is the velocity of the moving reference frame
l′. But now we are going to prove that the last statement is
not true. For this purpose we calculate the inverse transform
to (a)–(b), by means of solving the system (a)–(b) relatively
the variables (x, t):

x = γ(v)
(
x′ + v f (v)t′

)
(c)

t = γ(v)
(
t′ +
v f (v)x′

c2

)
. (d)

The origin of the moving reference frame l′ at any fixed time
point τ has the coordinates (0, τ) in the frame l′, and, ac-
cording to the transformations (c)–(d), it has the coordinates
(γ(v)v f (v)τ, γ(v)τ) in the frame l. Consequently, the origin of
the moving frame l′ will overpass the distance γ(v)v f (v)τ dur-
ing the time interval

[
0, γ(v)τ

]
(where we select any τ , 0).

Hence, the velocity u of the moving reference frame l′ is equal
to the following value:

u =
γ(v)v f (v)τ
γ(v)τ

= v f (v),
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which is not v. Thus, the parameter v in (a)–(b) is expressed
via the actual velocity u of the reference frame l′ by means of
the formula, v = u

f (v) . And the substitution of the value u
f (v)

instead of v into transformations (a)–(b) leads to the classical
Lorentz transformations.

Hence, we have seen, that the formulas (a)–(b) (or the
formulas (3)–(4) from [10]) are one of the representations
for classical Lorentz transformations, and the actual veloc-
ity u = v f (v) of the moving reference frame, according to the
condition 3, can not exceed the velocity of light.

Also, it should be noted, that the transformations (a)–(b)
(or (3)–(4) from [10]) are preserving the Lorentz-Minkowski
pseudo-metric:

Mc (t, x) = x2 − c2t2

in the Minkowski space-time over real axis x ∈ R. But any bi-
jective linear operator in the Minkowski space-time, preserv-
ing the Lorentz-Minkowski pseudo-metric, belongs to the gen-
eral Lorentz group [12], and it can not be coordinate trans-
form for superluminal reference frame.

The coordinate transformations (9)–(10) from [10], ac-
cording to the author requirements, also are preserving the
Lorentz-Minkowski pseudo-metric in the Minkowski space-
time over R3. Therefore they also can not be coordinate
transformations for superluminal reference frames. And they
can be analyzed in details by a similar way as the transforma-
tions (3)–(4) from [10].

Submitted on July 25, 2017
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In this paper, we revisit the question of relativistic mass to clarify the meaning of this
concept within special relativity, and consider time dilation and length contraction in
more detail. We see that “length contraction” is a misnomer and that it should really
be named “space contraction” to avoid confusion, and demonstrate the complementary
nature of time dilation and space contraction. We see that relativistic mass is dependent
on the difference in velocity v between an object’s proper frame of reference that is at
rest with the object and the frame of reference from which it is observed. We show that
the inertial mass of a body is its proper mass while the relativistic mass m∗ is in effect
an effective mass. We find that relativistic mass results from dealing with dynamic
equations in local time t in a frame of reference moving with respect to the object of
interest, instead of the invariant proper time τ in the frame of reference at rest with the
object. The results obtained are in agreement with the Elastodynamics of the Spacetime
Continuum.

1 Introduction

The concept of relativistic mass has been a part of special rel-
ativistic physics since it was first introduced by Einstein [1,2]
and explored by the early relativists (see for example [3, 4]).
Other terminology is also used for relativistic mass, repre-
senting the users’ perspective on the concept. For example,
Aharoni [5] refers to it as the “relative mass”, while Dixon [6]
refers to it as “apparent mass”. Oas [7] and Okun [10] pro-
vide good overviews on the development of the historical use
of the concept of relativistic mass. Oas [8] has prepared a bib-
liography of published works where the concept is used and
where it is ignored.

There is no consensus in the physics community on the
validity and use of the concept of relativistic mass. Some
consider relativistic mass to represent an actual increase in
the inertial mass of a body [12]. However, there have been
objections raised against this interpretation (see Taylor and
Wheeler [14], Okun [9–11], Oas [7]). The situation seems to
arise from confusion on the meaning of the special relativistic
dynamics equations. In this paper, we revisit the question of
relativistic mass to clarify the meaning of this concept within
special relativity, in light of the Elastodynamics of the Space-
time Continuum (STCED) [18, 19].

2 Relativistic mass depends on the frame of reference

The relativistic mass m∗ is given by

m∗ = γm0 , (1)

where

γ =
1(

1 − β2)1/2 , (2)

β = v/c and m0 is the rest-mass or proper mass which is an
invariant. Some authors [11] suggest that rest-mass should be

denoted as m as this is the real measure of inertial mass. The
relativistic mass of an object corresponds to the total energy
of an object (invariant proper mass plus kinetic energy). The
first point to note is that the relativistic mass is the same as the
proper mass in the frame of reference at rest with the object,
i.e. m∗ = m0 for v = 0. In any other frame of reference in mo-
tion with velocity v with respect to the object, the relativistic
mass will depend on v according to (1).

For example, when the relativistic mass of a cosmic ray
particle is measured† in an earth lab, it depends on the speed
of the particle measured with respect to the earth lab. Simi-
larly for a particle in a particle accelerator, where its speed is
measured with respect to the earth lab. The relativistic mass
of the cosmic ray particle measured from say a space station
in orbit around the earth or a spaceship in transit in space
would depend on the speed of the particle measured with re-
spect to the space station or the spaceship respectively.

We thus see that relativistic mass is an effect similar to
length contraction and time dilation in that it is dependent on
the difference in velocity v between the object’s frame of ref-
erence and the frame of reference from which it is measured.
Observers in different moving frames will measure different
relativistic masses of an object as there is no absolute frame
of reference with respect to which an object’s speed can be
measured.

3 Time dilation and space contraction

To further understand this conclusion, we need to look into
time dilation and length contraction in more detail. These
special relativistic concepts are often misunderstood by phys-
icists. Many consider these changes to be actual physical
changes, taking the Lorentz-Fitzgerald contraction and the
time dilation effect to be real.

†what is measured is the energy of the particle, not its mass.
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For example, John Bell in [15] relates the problem of the
thread tied between two spaceships and whether the thread
will break at relativistic speeds due to length contraction. He
insists that it will – he relates how “[a] distinguished ex-
perimental physicist refused to accept that the thread would
break, and regarded my assertion, that indeed it would, as
a personal misinterpretation of special relativity”. Bell ap-
pealed to the CERN Theory Division for arbitration, and was
dismayed that a clear consensus agreed that the thread would
not break, as indeed is correct. As the number of special rel-
ativistic “paradoxes” attest, many physicists, scientists and
engineers have similar misunderstandings, not clearly under-
standing the concepts.

This situation arises due to not realizing that v is the dif-
ference in velocity between an object’s frame of reference and
the frame of reference from which it is measured, not an ab-
solute velocity, as discussed in the previous section 2. In a
nutshell, time dilation and length contraction are apparent ef-
fects. In the frame of reference at rest with an object that is
moving at relativistic speeds with respect to another frame of
reference, there is no length contraction or time dilation.

The proper time in the frame of reference at rest with the
object is the physical time, and the length of the object in
the frame of reference at rest with the object is the physical
length – there is no time dilation or length contraction. These
are observed in other frames of reference moving with respect
to that object and are only apparent dilations or contractions
perceived in those frames only. Indeed, observers in frames
of reference moving at different speeds with respect to the
object of interest will see different time dilations and length
contractions. These cannot all be correct – hence time dilation
and length contraction are apparent, not real.

This can be demonstrated to be the case from physical
considerations, and in so doing, we clarify further the na-
ture of length contraction. Petkov [13] provides graphically a
physical explanation of time dilation and length contraction,
based on Minkowski’s 1908 paper [16] where the latter first
introduced the concept of a four-dimensional spacetime and
the description of particles in that spacetime as worldlines.
Worldlines of particles at rest are vertical straight lines in a
space−ct diagram, while particles moving at a constant ve-
locity v are oblique lines and accelerated particles are curved
lines.

The basic physical reason for these effects can be seen
from the special relativistic line element (using x to represent
the direction of propagation and c = 1)

dτ2 = dt2 − dx2 . (3)

One sees that for a particle at rest, the vertical straight line in
a space−ct diagram is equivalent to

dτ2 = dt2 , (4)

which is the only case where the time t is equivalent to the
proper time τ (in the object’s frame of reference). In all other

cases, in particular for the oblique line in the case of con-
stant velocity v, (3) applies and there is a mixing of space x
and time t, resulting in the perceived special relativistic ef-
fects observed in a frame of reference moving at speed v with
respect to the object of interest.

Loedel diagrams [17], a variation on space−ct diagrams
allowing to display the Lorentz transformation graphically,
are used to demonstrate graphically length contraction, time
dilation and other special relativistic effects in problems that
involve two frames of reference. Figs. 1 and 2, adapted from
Petkov’s Figs. 4.18 [12, p. 86], and 4.20 [12, p. 91] respec-
tively, and Sartori’s Fig. 5.15 [17, p. 160], provide a graphical
view of the physical explanation of time dilation and length
contraction respectively.

From Fig. 1, we see that ∆t′ > ∆t as expected – the mov-
ing observer sees time interval ∆t′ of the observed object to
be dilated, while the observed object’s time interval ∆t is ac-
tually the physical proper time interval ∆τ. From Fig. 2, we
see that space distance measurements, i.e. space intervals,
∆x′ < ∆x as expected – the moving observer sees space inter-
val ∆x′ of the observed object to be contracted, while the ob-
served object’s space interval ∆x is actually the proper space
interval.

This provides a physical explanation for length contrac-
tion as a manifestation of the reality of a particle’s extended
worldline, where the cross-section measured by an observer
moving relative to it (i.e. at an oblique line in the space−ct
diagram), creates the difference in perceived length between
a body in its rest frame and a frame in movement, as seen in

Fig. 1: Physical explanation of time dilation in a Loedel space−ct
diagram
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Fig. 2: Physical explanation of length contraction in a Loedel
space−ct diagram

Fig. 2. It is important to understand that space itself is per-
ceived to be contracted, not just objects in space. As seen in
STCED [18], objects are not independent of spacetime, but
are themselves deformations of spacetime, and are as such
perceived to be contracted as space itself is. In actual prac-
tice, this phenomenon should be called space contraction, to
avoid confusion, and demonstrate the complementary nature
of time dilation and space contraction.

Thus we see that apparent time dilation and space contrac-
tion are perfectly valid physical results of Special Relativity,
and there is nothing anomalous about them. Proper consider-
ation of these phenomena eliminates the so-called paradoxes
of Special Relativity as demonstrated by various authors, see
for example [12, 14, 17]. We now explore the question of rel-
ativistic mass, which we first considered in section 2, in light
of these considerations.

4 Relativistic mass as an effective mass

In this section, we show that the inertial mass of a body is
its proper mass while the relativistic mass m∗ is in effect an
effective mass or, as Dixon [6] refers to it, an apparent mass.
An effective mass is often introduced in dynamic equations in
various fields of physics. An effective mass is not an actual
mass – it represents a quantity of energy that behaves in dy-
namic equations similar to a mass. Using the effective mass,
we can write the energy E as the sum of the proper mass and
the kinetic energy K of the body, which is typically written as

E = m∗c2 = m0 c2 + K (5)

to give
K = (γ − 1) m0 c2 . (6)

In reality, the energy relation in special relativity is qua-
dratic, given by

E2 = m2
0 c4 + p2c2 , (7)

where p is the momentum. Making use of the effective mass
(1) allows us to obtain a linear expression from (7), starting
from

m∗2c4 = γ2m2
0 c4 = m2

0 c4 + p2c2 , (8)

which becomes
pc =

√
γ2 − 1 m0 c2 (9)

or
pc = βγm0 c2 =

v

c
γm0 c2 =

v

c
E . (10)

Then
p = m∗v . (11)

As [12, p. 112] shows, the γ factor corresponds to the deri-
vative of time with respect to proper time, i.e.

dt
dτ
=

1(
1 − β2)1/2 = γ , (12)

such that the velocity with respect to the proper time, u, is
given by

u = γv . (13)

Hence using (13) in (11) yields the correct special relativistic
relation

p = m0 u , (14)

which again shows that m∗ in (11) is an effective mass when
dealing with dynamic equations in the local time t instead of
the invariant proper time τ. It is easy to see that differentiating
(14) with respect to proper time results in a force law that
obeys Newton’s law with the proper mass acting as the inertial
mass.

Hence we find that relativistic mass results from dealing
with mass in local time t in a frame of reference moving with
respect to the object of interest, instead of the invariant proper
time τ in the frame of reference at rest with the object, and,
from that perspective, is an effect similar to space contraction
and time dilation seen in section 3. We see that the rest-mass
m0 should really be referred to as the proper mass, to avoid
any confusion about the invariant mass of a body.

Relativistic mass is not apparent as time dilation and spa-
ce contraction are, but rather is a measure of energy that de-
pends on the relative speed v between two frames of refer-
ence, and is not an intrinsic property of an object as there is
no absolute frame of reference to measure an object’s speed
against. The relativistic mass energy m∗c2 is actually the total
energy of an object (proper mass plus kinetic energy) mea-
sured with respect to a given frame of reference and is not
a mass per se as mass is a relativistic invariant, i.e. a four-
dimensional scalar, while energy is the fourth component of
a four-vector.
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5 Relativistic mass and STCED

In STCED, the proper mass corresponds to the invariant lon-
gitudinal volume dilatation given by [19, p. 32]

ρc2 = 4κ0 ε (15)

which is equivalent to the inertial mass. The constant κ0 is
the spacetime bulk modulus and ε is the spacetime volume
dilatation. Clearly, the longitudinal volume dilatation does
not increase with velocity as it is an invariant. The result (14)
is as expected from STCED.

For a spacetime volume element, the apparent space con-
traction in the direction of motion will be cancelled out by
the apparent time dilation, i.e. the γ factors will cancel out.
Thus the volume dilatation ε and the proper mass density ρ of
(15) remain unchanged from the perspective of all frames of
reference.

The only quantity that is impacted by the observer’s frame
of reference is the kinetic energy K or alternatively the quan-
tity pc. In the frame of reference at rest with the object (which
we can call the proper frame of reference), the kinetic energy
K = 0 as seen from (6), while pc = 0 as seen from (9). The
relativistic mass of an object is an effective mass defined to
correspond to the total energy of an object (invariant proper
mass plus kinetic energy) as observed from the perspective of
another frame of reference. It does not represent an increase
in the proper mass of an object, which as we have seen in
section 4, corresponds to the inertial mass of the object.

6 Discussion and conclusion

In this paper, we have revisited the question of relativistic
mass to clarify the meaning of this concept within special
relativity. We have also considered time dilation and length
contraction in more detail to help clarify the concept of rel-
ativistic mass. We have seen that “length contraction” is a
misnomer and that it should really be named “space contrac-
tion” to avoid confusion, and demonstrate the complementary
nature of time dilation and space contraction.

We have seen that relativistic mass is dependent on the
difference in velocity v between an object’s proper frame of
reference that is at rest with the object and the frame of ref-
erence from which it is observed. We showed that the iner-
tial mass of a body is its proper mass while the relativistic
mass m∗ is in effect an effective mass. We showed that rel-
ativistic mass results from dealing with dynamic equations
in local time t in a frame of reference moving with respect
to the object of interest, instead of the invariant proper time
τ in the frame of reference at rest with the object. The re-
sults obtained are in agreement with the Elastodynamics of
the Spacetime Continuum.
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Global Scaling as Heuristic Model for Search of Additional Planets
in the Solar System

Hartmut Müller
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In this paper we apply scale-invariant models of natural oscillations in chain systems of
harmonic quantum oscillators to search for additional planets in the Solar System and
discuss the heuristic significance of those models in terms of our hypothesis of global
scaling.

Introduction

In the last 8 years the heuristic significance of scale invari-
ance (scaling) was demonstrated in various fields of physical
research. In [1] we have shown that scale invariance is a fun-
damental property of natural oscillations in chain systems of
similar harmonic oscillators. In [2] we applied this model
on chain systems of harmonic quantum oscillators and could
show that particle rest masses coincide with the eigenstates of
the system. This is valid not only for hadrons, but for mesons
and leptons as well. Andreas Ries [3] demonstrated that this
model allows for the prediction of the most abundant isotope
of a given chemical element. The interpretation of the Planck
mass as eigenstate in a chain system of oscillating protons
has allowed us to derive the proton rest mass from fundamen-
tal physical constants [4]. There we have proposed a new in-
terpretation of the cosmic microwave background as a stable
eigenstate of a chain system of oscillating protons.

Scale-invariant models of natural oscillations in chain
systems of protons also give a good description of the mass
distribution of large celestial bodies in the Solar System [5].
Physical properties of celestial bodies such as mass, size, ro-
tation and orbital period can be understood as macroscopic
quantized eigenstates of chain systems of oscillating protons
and electrons [4]. This understanding can be applied to an
evolutionary trend prognosis of the Solar System but may be
of cosmological significance as well.

In this paper we apply our hypothesis of global scaling [4]
to the search for additional planets in the Solar System.

Methods

In [1] we have shown that the set of natural frequencies of a
chain system of harmonic oscillators coincides with a set of
finite continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the

fundamental frequency of the set. The denominators are in-
teger numbers: n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N
of the set and the number k ∈N of layers are finite. In the
canonical form, the numerator z is equal 1.

Any finite continued fraction represents a rational num-
ber [6]. Therefore, all frequencies ω jk in (1) are irrational, be-
cause for rational exponents the natural exponential function
is transcendental [7]. This circumstance presumably provides
for the high stability of the oscillating chain system because
it avoids resonance interaction between the elements of the
system [8].

In the case of harmonic quantum oscillators, the contin-
ued fraction (1) defines not only a fractal set of natural angu-
lar frequencies ω jk and oscillation periods τ jk = 1/ω jk of the
chain system, but also fractal sets of natural energies
E jk = ℏ ·ω jk and masses m jk = E jk/c2 which correspond with
the eigenstates of the system. For this reason, we have called
the continued fraction (1) the “fundamental fractal” of eigen-
states in chain systems of harmonic quantum oscillators [4].

The electron and the proton are exceptionally stable quan-
tum oscillators and therefore the proton-to-electron rest mass
ratio can be understood as a fundamental physical constant.

We hypothesize the cosmological significance of scale in-
variance based on the fundamental fractal F (1) that is cali-
brated by the physical characteristics of the electron and the
proton. This hypothesis we have called ‘global scaling’ [9].

Results

In [4] we have shown that the masses of the largest bodies in
the Solar System correlate with main attractor nodes of the
F (1), supporting our hypothesis of global scaling as forming
factor of the Solar System.

For example, the natural logarithm of the Sun-to-electron
mass ratio is close to an integer number:

ln (MSun/melectron) =

= ln(1.9884 · 1030kg/9.10938356 · 10−31kg) = 138.936

This is also valid for Jupiter’s body mass:

ln
(
MJupiter/melectron

)
=

= ln(1.8986 · 1027kg/9.10938356 · 10−31kg) = 131.981
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Fig. 1: The mass distribution of planets, heaviest planetoids and moons along the electron-calibrated fundamental fractal F (1). The nodes
[130], [128], [127], [125], [123] and [121] are vacant.

Fig. 2: This copy of fig. 1 shows the mass ranges of hypothetical planetoids, planets and gas giants which could occupy the vacant nodes
[130], [128], [127], [125], [123] and [121] of the electron-calibrated fundamental fractal F (1).

And for Venus as well:

ln (MVenus/melectron) =

= ln(4.8675) · 1024kg/9.10938356 · 10−31kg) = 126.015

Table 1 gives an overview of the body masses of the planets
and heaviest planetoids and their positions in the fundamental
fractal F (1).
The electron rest mass me = 9.10938356 · 10−31 kg [10].

Table 1 shows that the body masses of Jupiter, Neptune,
Uranus, Venus, Mars, Pluto, Charon and Haumea coincide
with main attractor nodes (integer logarithms) of the electron-
calibrated F (1). This also applies to the Sun. Figure 1 shows
the mass distribution of planets, heaviest planetoids and
moons along the electron-calibrated fundamental fractal
F (1). The nodes [130], [128], [127], [125], [123], [121] are
vacant.

The vacant nodes [121] and [123] indicate that in the mass
ranges of 2 to 4 · 1022 kg and in the range of 2 to 3 · 1023 kg
there should be planetoids still to be discovered. Furthermore,
we may expect new planets in the range of 1 to 2 · 1024 kg.
The probability of new gas giants in the Solar System is also
very high, because of the wide vacant mass ranges of 1 to

5 · 1025 kg and of 2 to 3 · 1026 kg. Figure 2 shows the distri-
bution of these hypothetical bodies on the fundamental frac-
tal F (1).

Conclusion

The discovery of new gas giants, planets and planetoids with
the properties predicted above would be an important con-
firmation of our hypothesis of global scaling as a forming
factor of the Solar System. Already in 2010 [5] we calcu-
lated the masses of some of these hypothetical bodies and in
2015 [11, 12] we estimated their orbital elements.

Our calculations correspond well with the hypothesis of
Batygin and Brown [13] about a new gas giant called “planet
9” and with the hypothesis of Volk and Malhotra [14] about
an unknown Mars-to-Earth mass “planet 10” beyond Pluto.

Based on the vacancies in the fundamental fractal F (1),
we hypothesize the existence of at least two unknown giant
planets (see fig. 2). It is likely that they are gas giants. How-
ever, this conclusion cannot be made based on the estimation
of their masses only, but requires an additional estimation of
their radii, which should correspond with vacant positions in
the fundamental fractal F (1) that is calibrated by the proton
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Table 1: The logarithms of the body-to-electron mass ratio for the
Sun, the planets, the heaviest planetoids (P) and the corresponding
positions in the fundamental fractal F (1).

celestial body body mass m, kg ln (m/me) F
Sun 1.9884 ·1030 138.936 [139;∞]

Jupiter 1.8986 ·1027 131.981 [132;∞]

Saturn 5.6836 ·1026 130.776 [131; -4]

Neptune 1.0243 ·1026 129.062 [129;∞]

Uranus 8.681 ·1025 128.897 [129;∞]

Earth 5.97237 ·1024 126.220 [126; 4]

Venus 4.8675 ·1024 126.015 [126;∞]

Mars 6.4171 ·1023 123.989 [124;∞]

Mercury 3.3011 ·1023 123.324 [123; 3]

Eris (P) 1.67 ·1022 120.341 [120; 3]

Pluto (P) 1.305 ·1022 120.094 [120;∞]

Haumea (P) 4.006 ·1021 118.913 [119;∞]

Charon (P) 1.587 ·1021 117.944 [118;∞]

and electron wavelengths.
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“Angel particle” bearing properties of both particles and anti-particles, which was re-
cently discovered by the Stanford team of experimental physicists, is usually associated
with Majorana fermions (predicted in 1937 by Ettore Majorana). In this message we
point out that particles bearing properties of both matter and anti-matter were as well
predicted without any connexion with particle physics, but on the basis of pure mathe-
matics, namely — neutrosophic logic which is a generalization of fuzzy and intuition-
istic fuzzy logics in mathematics.

Recently, a group of experimental physicists conducted
by Prof. Shoucheng Zhang, in Stanford University, claimed
about discovery of the particles that bear properties of both
particles and anti-particles. The press-release [1] was issued
on July 20, one day before the official publication [2].

Shoucheng Zhang told [1, 2] that the idea itself rose up
from Ettore Majorana who in 1937 suggested that within the
class of fermions a particle may exist which bear properties
of particle and anti-particle in the same time. Such hypothetic
particles are now know as “Majorana fermions”.

In their experiment, the Stanford team used the following
experimental setup. Two stacked films — the top film made
of superconductor and the bottom film made of magnetic in-
sulator — were stored together in a cooled down vacuum box.
And an electrical current was sent through this “sandwich”.
Using a magnet mounted over the stackled films, the speed of
the electrons in the film was able to be modifying. Varying
the magnet’s properties, the experimentalists registered Ma-
jorana particles which appeared in pairs in the electron flow
but deviated from the electrons (so they were able to be reg-
istered separately). The experimentalists referred to the sup-
posed new particle as “Angel particle” (meaning that, as well
as angels are neither male nor female, the supposed particle
is neither matter nor anti-matter).

Shoucheng Zhang also declared the importance of this
discovery because, he thinks, the particles bearing properties
of matter and anti-matter in the same time shows a fantastic
perspective for computer industry and machinery.

In this background, we should note that particles bearing
properties of matter and anti-matter were as well theoretically
predicted being non-connected with particle physics, but only
on the basis of pure mathematics. This is a series of works
[3–8] based on neutrosophic logic (one of the multi-valued
modern logics, a part of mathematics) authored by Florentin
Smarandache.

So, following the neutrosophic logics, “between an entity
<A> and its opposite <AntiA> there exist intermediate en-

tities <NeutA> which are neither <A> nor <AntiA> [. . .]
Thus, between “matter” and “antimatter” there must exist so-
mething which is neither matter nor antimatter, let’s call it
UNMATTER” [3]. Expanding this theory, a new type of mat-
ter — “unmatter” — was predicted.

Now, this theoretical study based on pure mathematics,
elucidates that was discovered by the Stanford team conduct-
ed by Shoucheng Zhang. This fact shows that not only par-
ticle physics but also pure mathematics can make essential
predictions that may change the wirld of science and tech-
niques.
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In a five-dimensional gravitational theory (or 5D gravity), a scalar field is usually in-
cluded to couple with the gravitational and electromagnetic fields, which are directly
originated from or generated by the mass and electric charge of matter, respectively.
Theoretical analyses have shown that the scalar field of 5D gravity can polarize the
space (or vacuum) and shield gravity (or flatten spacetime), especially when the object
that generates the fields is extremely compact, massive, and/or highly charged. Re-
cently, the scalar field of 5D gravity has been directly connected to the Higgs field of
4D particle physics, so that it dramatically relates to the Ginzburg-Landau scalar field of
Bose-Einstein condensates associated with superconductors and/or superfluids. There-
fore, the scalar field effect on the properties of light and the weight of objects may be
detectable in a laboratory of low temperature physics. In this study, we first analyze
the index of refraction of the space or vacuum that is polarized by scalar field. We then
explore approaches of detection and design experiments to test the space polarization
or the effect of scalar field on light as well as the equivalence or connection between the
scalar field of 5D gravity and that of 4D particle physics.

1 Introduction

In contrast to the vector field of electromagnetism and the ten-
sor field of gravitation, a scalar field is a field that has no di-
rection. Up to now, many physical phenomena are explained
with the physics of scalar fields such as the cosmic inflation
[1-2], dark matter [3-4], dark energy [5-6], particle mass gen-
eration [7-9], particle creation [10], gravitational field shield-
ing [11-12], space or vacuum polarization [13-15], and so
on. In the particle physics, the Higgs field, which generates
masses of particles such as leptons and bosons, is a scalar
field associated with particles of spin zero. In the 5D gravity,
the gravitational and electromagnetic fields are coupled with
a scalar field. Theoretical analyses have shown that the scalar
field of 5D gravity can polarize the space or vacuum [13-15]
and shield the gravity or flatten the spacetime [11-12,16-17],
especially when the object of the fields is extremely compact,
massive, and/or highly charged.

The scalar field of the 5D gravity has a direct relation or
connection to the Higgs scalar field of the 4D particle physics
[18]. The Higgs boson or Higgs particle is an elementary
particle initially theorized in 1964 [7-9] and tentatively dis-
covered to exist by the Large Hadron Collider at CERN [19].
This tentative discovery confirmed the existence of the Higgs
scalar field, which led to the Nobel Prize of physics in 2013
to be awarded to Peter W. Higgs and Francois Englert. The
Higgs mechanism is a process for particles to gain masses
from the interaction with the Higgs scalar field. It describes
the superconductivity of vacuum according to the Ginzburg-
Landau model of the Bose-Einstein condensates.

Therefore, the scalar field of the 5D gravity can be con-
sidered as a type of Higgs scalar field of 4D particle physics.

The latter can be considered as a type of Ginzburg-Landau
scalar field of the Bose-Einstein condensates [20-21]. Then,
that the scalar field of the 5D gravity can shield the gravita-
tional field (or flatten the spacetime) and polarize the space or
vacuum must imply that the Ginzburg-Landau scalar field of
superconductors and superfluids in the state of Bose-Einstein
condensates can also shield the gravitational field (or flatten
the spacetime) and polarize the space or vacuum.

In fact, the experiment conducted about two decades ago
had indeed shown that a rotating type-II ceramic supercon-
ductor disk at low temperature could have a moderate (∼2 −
3%) shielding effect against the Earth gravitational field [22].
The experiment conducted later for a static testing with the
shielding effect of ∼0.4% [23]. Recently, we have explained
these measurements as the gravitational field shielding [12]
by the Ginzburg-Landau scalar field of Bose–Einstein con-
densates associated with the type II ceramic superconductor
disk according to the 5D fully covariant gravity developed by
Zhang [11,15,24].

In this paper, we will focus on the vacuum polarization
by scalar field and its testing. We will explore some possi-
ble approaches and further design viable experiment setups
to test the space or vacuum polarization by the scalar field
(i.e. the effect of scalar field on light). We will, at first, ap-
ply the fully covariant 5D gravity with a scalar field that was
developed by Zhang [11,15] and references therein to formu-
late the index of refraction in the vacuum that is polarized by
the scalar field of this 5D gravity. Then, we will employ the
Ginzburg-Landau scalar field generated by the Bose-Einstein
condensates of superconductors and superfluids to replace or
add the scalar field of the 5D gravity. Finally, we will design
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an experiment setup of laser light interferences that may de-
tect the vacuum polarization by the Ginzburg-Landau scalar
field and thus test Zhang’s theory of vacuum polarization by
scalar field as well as Wesson’s equivalence and connection
between the scalar field of 5D gravity and the scalar field of
4D particle physics.

2 Index of refraction of the vacuum polarized by the
scalar field

According to the 5D fully covariant gravity with a scalar field
[15] and references therein, we can determine the index of
refraction of the vacuum that is polarized by the scalar field
as

n ≡ √ϵr = Φ3/2 exp
(
λ − ν

4

)
. (1)

Here, Φ is the scalar field and the functions, eλ and eν, are the
rr− and tt−components of the 4D spacetime metric. Both the
scalar field and the metric components are completely deter-
mined according to the exact field solution obtained by Zhang
[15] and references therein without any unknown parameter.

For objects in labs and the Earth itself, the fields of 5D
gravity are weak, so that we can approximately representΦ ∼
1 + δΦ, eλ ∼ 1, and eν ∼ 1. Then, the index of refraction in
the vacuum that is polarized by scalar fields reduces to

n = 1 +
3
2

∑
δΦ = 1 +

3
2

(
δΦ5D + δΦGL

)
. (2)

Here, Σ refers to the summation of contributions from all
kinds of scalar fields, including the scalar fields of the 5D
gravity from the Earth and any other charged objects and the
Ginzburg-Landau scalar fields of the 4D particle physics from
the Bose-Einstein condensates associated with superconduc-
tors and superfluids.

According to Zhang’s fully covariant 5D gravity [15] and
references therein such as [11,24], the scalar field of a char-
ged object with charge Q and mass M is given by,

δΦ5D =
2GM(1 + 3α2)

3
√

1 + α2c2

1
r
, (3)

where
α =

Q

2
√

GM
(4)

is a constant in cgs units, G is the gravitational constant, c
is the light speed in free space, and r is the radial distance
from the object. Considering an object with mass of 600 kg
and charge of 0.01 C, we have α ∼ 105 and δΦ5D ∼ 10−19 at
1 m radial distance. For Earth, we have α ∼ 0 and δΦ5D ∼
5 × 10−10 on the surface. Therefore, via Earth or a charged
object in labs, the scalar field of the 5D gravity is negligi-
bly weak, i.e. δΦ5D ∼ 0, and the effect on the vacuum po-
larization may be extremely difficult to detect. A new study
by Zhang [25] has theoretically shown that the space or vac-
uum polarization by the scalar field of 5D gravity generated

Fig. 1: The change for the index of refraction of the vacuum (n − 1)
versus the temperature of the superconductor (T ). The vacuum
is polarized by the Ginzburg-Landau scalar field of Bose-Einstein
condensates associated with a type II superconductor whose tran-
sition temperature is Tc = 92 K. Three lines correspond to three
cases for the ratio of the two phenomenological constants to be
a0/b = 10−8, 10−7, 10−6 K, respectively.

by a highly charged object may be directly detected by the
extremely accurate Laser Interferometer Gravitational-Wave
Observatory (LIGO), which has recently detected first ever
the gravitational waves from a binary black hole merger as
claimed in [26].

The Ginzburg-Landau scalar field of Bose-Einstein con-
densates associated with superconductors and superfluids can
be expressed as [20-21,27],

δΦGL =

√
−a0

b
(T − Tc) , (5)

where a0 and b are the phenomenological constants, T is the
temperature, and Tc is the transition temperature. A type II
superconductor, if its Ginzburg-Landau scalar field can pro-
duce a few percent (e.g. 2 − 3%) weight loss for a sample as
experimentally shown by [22-23], can also polarize the vac-
uum by increasing the index of refraction about a detectable
percentage. For a quantitative study, we plot in Fig. 1 the
index of refraction in the vacuum that is polarized by the
Ginzburg-Landau scalar field of Bose-Einstein condensates
associated with a type II superconductor as a function of the
temperature of the superconductor. In this plot, we have cho-
sen the values Tc = 92 K and a0/b = 10−8, 10−7, 10−6 K−1 as
done in [12].

It is seen that due to the polarization the index of refrac-
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tion of the vacuum can be increased by ∼0.1 − 1% for the
ratio of the phenomenological constants to be in a range of
a0/b = 10−8 − 10−6 K−1, which could lead to ∼2− 3% weight
loss for a sample as shown in [12]. This significant increase
of the index of refraction should be detectable in an optical
experiment. In the following section, we design an experi-
ment to test this scalar field effect on light or space polariza-
tion here predicted according to Zhang’s 5D fully covariant
gravity and Wesson’s scalar field equivalence or connection
between the 5D gravity and the 4D particle physics. Super-
fluids, though the transition temperature is lower but if the
ratio of phenomenological constants is higher, can also gen-
erate a significant scalar field to polarize the vacuum.

3 Experimental design and prediction

A laser light beam that has passed through a spatial filter can
be separated into two beams by a beam separator. These two
laser light beams once reflected by two mirrors into the same
region will interfere. If the difference of their optical dis-
tances travelled by the two beams is a factor of a whole num-
ber of the light wavelength, the interference is constructive
otherwise the interference is destructive. A bright and dark
pattern of interference is formed in the interference region.
Now, if one of the two laser light beams passes through the
space or vacuum that is polarized by scalar fields, then the in-
terference pattern will be changed. This is because the space
polarization lengthens the optical length of the path of the
light beam.

The interference pattern will change from bright to dark
or dark to bright, if the extra optical distance traveled for the
beam that has passed through the space or vacuum polarized
by scalar fields is given by

(n − 1) D =
(
m +

1
2

)
λ , (6)

where n is the index of refraction of the space or vacuum that
is polarized by the scalar field and its relation to the scalar
field is given by (1) or (2); D is the dimension of the object
that produces the scalar field; m + 1 is the number of shifting
the interference pattern from bright to dark (only one shift
from bright to dark if m = 0); and λ is the wavelength of the
laser light. The interference pattern does not change, if the
extra optical distance is a whole number of the light wave-
length, i.e. (n − 1) D = mλ.

To polarize the space or vacuum that one of the two laser
light beams travels through, we can place or put an electri-
cally charged object, a type II ceramic superconductor disk,
or a superfluid torus near the path of the beam (Fig. 2). Of
course, we can put all of them together to enhance the total
scalar field. Two superconductor disks can also double the
effect. In these cases, the parameter D in (6) can be roughly
estimated as the diameter of the charged object, superconduc-
tor disk, or superfluid torus.

Fig. 2: A schematic diagram for the experimental setup to test the
vacuum polarization by scalar field. A laser light that passes a spa-
tial filter can be separated into two beams by a beam separator. The
two beams once reflected by two mirrors into the same region will
interfere and produce a bright-dark interference pattern. When the
space or vacuum for the path of one beam is polarized by the scalar
field generated by charged objects, superconductor disks, and/or su-
perfluid toruses, the interference pattern will be varied or shifted.
Therefore, the detection of any variation or shifting of the inter-
ference pattern will test the theory for the vacuum polarization by
scalar field and the equivalence or connection for the scalar fields of
5D gravity and 4D particle physics.

As pointed out above, since it is not enough compact,
massive, and/or highly charged, an object in labs cannot gen-
erate a significant scalar field to polarize the space or vac-
uum up to a detectable level, but except for LIGO [25-26].
The extra optical distance that a charged object can produce
is (n−1) D = 3/2 δΦ5DD ∼ 10−19, which is too small in com-
parison with the wavelength of light. Therefore, a charged
object cannot lead to a measurable shifting of the interfer-
ence pattern. The scalar field of 5D gravity due to the Earth
can neither vary the interference pattern, because it evenly
affects both the beams of laser light.

To see how significant for a type II ceramic supercon-
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Fig. 3: The number of shifting the interference pattern from bright
to dark, m, versus the ratio of the phenomenological constants, a0/b.
The temperature and transition temperature of the conductor are cho-
sen as = 70 K and Tc = 92 K, respectvely.

ductor disk to vary the interference pattern, we plot in Fig. 3
the number of shift, m, as a function of the ratio of the phe-
nomenological constants, a0/b, according to (6) with (2) and
(5). Here, we have chosen D = 0.11 m, Tc = 92 K, and
T = 70 K according to the previous laboratory experiment
[22] and analytical study [12]. The wavelength is chosen as a
blue light with λ ∼ 5 × 10−5 m. It is seen that the Ginzburg-
Landau scalar field of Bose-Einstein condensates associated
with a type II ceramic superconductor disk can lead to a sig-
nificant shifting of the interference pattern. This varying of
interference pattern is detectable only needing the ratio of the
phenomenological constants to be greater than about 10−10

K−1. Therefore, the effect of scalar field on light (or the
space polarization) should be much more easily detected than
the effect of scalar field on weight (or the gravitational field
shielding).

4 Discussions and conclusions

We have investigated the vacuum polarization by the Ginz-
burg-Landau scalar field of Bose-Einstein condensates asso-
ciated with superconductors and superfluids. First, we have
formulated the index of refraction of the vacuum that is polar-
ized by the scalar field according to Zhang’s 5D fully covari-
ant gravity and Wesson’s equivalence or connection of scalar
fields between 5D gravity and 4D particle physics. Then, we
have designed an experimental setup with laser light interfer-
ences to detect the effect of scalar field on light and hence

the vacuum polarization by the Ginzburg-Landau scalar field.
Via this study, we have seen that the Ginzburg-Landau scalar
field of Bose-Einstein condensates associated with a type II
ceramic superconductor disk can cause a significant and thus
detectable shifting of the laser light interference pattern. The
ratio of the phenomenological constants can be much smaller
than that for a detectable weight loss of a sample. Therefore,
we have provided a possible approach and experimental setup
for detecting the effect of scalar field on light in labs. In fu-
ture, we will implement the design to conduct the experiment
and perform the testing.
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In this paper, we consider the question of the impact of acceleration in special relativity.
Some physicists claim that acceleration does not matter in special relativity based on
the Clock Hypothesis. We find that the experimental support of the Clock Hypothesis
usually provided by the Mössbauer spectroscopy experiment of Kündig [5] and the
muon experiment of Bailey et al [2] is questionable at best. We consider the case for
the impact of acceleration in special relativity and derive an expression for the time
dilation in an accelerated frame of reference, based on the equivalence principle of
general relativity. We also derive an expression for space contraction in an accelerated
frame of reference. We note that the presence of acceleration in a frame of reference
provides a means of determining the motion of that frame of reference as acceleration
can be easily detected compared to constant velocity which cannot. We discuss the
“twin paradox” of special relativity and note that this is not truly a special relativity
problem for there is no way to avoid acceleration. We note that because of time dilation
in accelerated frames of reference, the astronaut will age less than its earth-bound twin,
but only during periods of acceleration.

1 Introduction

In a recent paper [1], we showed that time dilation and space
contraction in inertial reference frames, that is unaccelerated
reference frames moving at a constant velocity, are apparent
effects perceived in a frame of reference moving with respect
to an object of interest. The real physical time and length are
in the frame of reference at rest with the object, and in that
frame, there is no time dilation or space contraction as v = 0
(and acceleration a = 0). This is seen clearly in Fig. 1 where
a time dilation is perceived in the frame of reference moving
at speed v with respect to the object of interest (∆t′), while
there is no dilation in the object’s frame of reference (∆t).

This result would seem to be at odds with the often quoted
experimental tests of special relativity confirming time dila-
tion and length contraction. But if we consider, for example,
Bailey et al’s muon experiment [2], we find that there is no
contradiction with the experimental observations: a perceived
time dilation is observed in the Earth’s laboratory frame of
reference while the muon, in its frame of reference has no
time dilation – note that no measurements were carried out in
the muon’s frame of reference in the Bailey experiment.

Careful examination of experimental tests of special rel-
ativity also often reveals the presence of acceleration in the
experiments, contrary to the conditions under which special
relativity applies. The question of how to deal with accel-
eration in special relativity underlies many of the analytical
and experimental conundrums encountered in the theory and
is investigated in more details in this paper.

2 Measuring the impact of acceleration in special
relativity

The theory of special relativity applies to unaccelerated (con-
stant velocity) frames of reference, known as inertial frames

of reference, in a four-dimensional Minkowski spacetime [3],
of which the three-dimensional Euclidean space is a subspa-
ce. When the Lorentz-Fitzgerald contraction was first intro-
duced, it was considered to be a real physical effect in Eu-
clidean space to account for the null results of the Michelson-
Morley experiment. Einstein derived length contraction and
time dilation as effects originating in special relativity. These
depend on the velocity of the frame of reference with respect
to which an object is being observed, not the object’s velocity

Fig. 1: Physical explanation of time dilation in a Loedel space−ct
diagram

Pierre A. Millette. On the Question of Acceleration in Special Relativity 215



Volume 13 (2017) PROGRESS IN PHYSICS Issue 4 (October)

which can only be relative to another frame of reference, as
there is no absolute frame of reference against which to mea-
sure the object’s velocity. Indeed, if time dilation and length
contraction were real effects in special relativity, this would
be equivalent to saying that there is an absolute frame of ref-
erence against which it is possible to measure an object’s ve-
locity, contrary to the theory.

Increasingly, special relativity has been applied to accel-
erated frames of reference for which the theory does not ap-
ply. Some physicists claim that acceleration does not matter
in special relativity and that it has no impact on its results, but
there are many indications that this is not the case. The Clock
Hypothesis (or Postulate) is used to justify the use of acceler-
ated frames in special relativity: “when a clock is accelerated,
the effect of motion on the rate of the clock is no more than
that associated with its instantaneous velocity – the accelera-
tion adds nothing” [4, p. 9], and further postulates that if the
Clock Hypothesis applies to a clock, “ then the clock’s proper
time will be proportional to the Minkowski distance along its
worldline” [4, p. 95] as required.

Two experimental confirmations of the Clock Hypothe-
sis are usually given. The postulate is claimed to have been
shown to be true for accelerations of ∼1016g in a Mössbauer
spectroscopy experiment by Kündig [5] and of ∼1018g in Bai-
ley et al’s muon experiment [2], which uses rotational mo-
tion of particles to generate the acceleration – one obtains the
quoted acceleration for a particle velocity close to the speed
of light. However, a close examination of these experiments
shows that they don’t quite provide the experimental confir-
mation they are purported to give.

Kholmetskii et al [6] reviewed and corrected the process-
ing of Kündig’s experimental data and obtained an appre-
ciable difference of the relative energy shift ∆E/E between
emission and absorption resonant lines from the predicted rel-
ativistic time dilation ∆E/E = −v2/2c2 (to order c−2), where
v is the tangential velocity of the resonant radiation absorber.
Writing the relative energy shift as ∆E/E = −k v2/c2, they
found that k = 0.596 ± 0.006 instead of k = 0.5 as pre-
dicted by special relativity and Kündig’s original reported re-
sult of k = 0.5003 ± 0.006. They then performed a similar
Mössbauer spectroscopy experiment [7] with two absorbers
with a substantially different isomer shift to be able to cor-
rect the Mössbauer data for vibrations in the rotor system
at various rotational frequencies. They obtained a value of
k = 0.68 ± 0.03, a value similar to 2/3. Since then Kholmet-
skii and others [8–12] have performed additional experimen-
tal and theoretical work to try to explain the difference, but the
issue remains unresolved at this time, and is a clear indication
that acceleration is not compatible with special relativity.

In their experiment of the measurement of the lifetime
of positive and negative muons in a circular orbit, Bailey et
al [2] obtained lifetimes of high-speed muons which they then
reduced to a mean proper lifetime at rest, assuming that spe-
cial relativity holds in their accelerated muon experimental

setup. This experiment was carried out at CERN’s second
Muon Storage Ring (MSR) [13, 14] which stores relativistic
muons in a ring in a uniform magnetic field. The MSR was
specifically designed to carry out muon (g−2) precession ex-
periments (g is the Landé g-factor) with muons of momentum
3.094 GeV/c corresponding to a γ-factor of 29.3 (effective
relativistic mass [1]), so that the electrons emitted from muon
decay in the lab frame were very nearly parallel to the muon
momentum. The decay times of the emitted electrons were
measured in shower counters inside the ring to a high preci-
sion, and the muon lifetimes in the laboratory frame were cal-
culated by fitting the experimental decay electron time spec-
trum to a six-parameter exponential decay modulated by the
muon spin precession frequency, using the maximum likeli-
hood method – one of the six parameters is the muon rela-
tivistic lifetime.

It is important to note that the decay electrons would be
ejected at the instantaneous velocity of the muon (0.9994c
from the γ = 29.3 factor) tangential to the muon’s orbit. Thus
the ejected electron moves at the constant velocity of ejec-
tion to the shower counter and acceleration does not play a
role. Even though the muons are accelerated, the detected
electrons are not, and the experiment is not a test of the Clock
Hypothesis under acceleration as claimed. There is thus no
way of knowing the impact of acceleration from the experi-
mental results as acceleration is non-existent in the detection
and measurement process.

It should also be noted that Hafele et al [17] in their time
dilation “twin paradox” experiment applied a correction for
centripetal acceleration to their experimental results. in addi-
tion to a gravitational time dilation correction, to obtain re-
sults in agreement with Lorentz time dilation. The effect of
acceleration cannot be disregarded in that experiment. This
will be considered in more details in section 4. We thus
find that the experimental support of the Clock Hypothesis
is questionable at best.

3 The case for the impact of acceleration in special
relativity

Having determined that there is little experimental support for
the validity of the Clock Hypothesis in accelerated frames of
reference in special relativity, we consider the case for the im-
pact of acceleration in special relativity. Einstein developed
general relativity to deal with accelerated frames of reference
– if acceleration can be used in special relativity, why bother
to develop a more general theory of relativity? Inspection
of an accelerated worldline in a Minkowski space-ct diagram
shows that indeed there is no basis for the Clock Hypothe-
sis, as seen in Fig. 2. The accelerated worldline suffers an
increasing rate of time dilation, somewhat like gravitational
time dilation where increasing height in the gravitational po-
tential results in increasing time dilation.

This brings to mind Einstein’s equivalence principle in-
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troduced in the analysis of accelerated frames of reference in
general relativity. The simplest formulation of this principle
states that on a local scale, the physical effects of a gravi-
tational field are indistinguishable from the physical effects
of an accelerated frame of reference [15] (i.e. an acceler-
ated frame of reference is locally equivalent to a gravitational
field). Hence, as displayed graphically for the accelerated
worldline in the Minkowski space-ct diagram of Fig. 2, an ac-
celerated frame of reference undergoes time dilation similar
to gravitational time dilation [15]. Indeed, assuming that ac-
celeration has no impact in special relativity cannot be correct
as it violates the equivalence principle of general relativity.

We explore the connection between gravitational time di-
lation and the time dilation in an accelerated frame of refer-
ence in greater details. Gravitational time dilation can be de-
rived starting from the Schwarzschild metric with signature
(+ - - -) [16, p. 40]

c2dτ2 =

(
1 − 2GM

rc2

)
c2dt2 −

(
1 − 2GM

rc2

)−1

dr2−

− r2
(
dθ2 + sin2 θ dφ2

)
,

(1)

where τ is the proper time, (r, θ, φ, t) are the spherical polar
coordinates including time, G is the gravitational constant, M
is the mass of the earth and c is the speed of light in vacuo.
The gravitational time dilation is obtained from the dt2 term
to give

∆t =
(
1 − 2GM

rc2

)− 1
2

∆t0 , (2)

where ∆t0 is the undilated (proper) time interval and ∆t is the
dilated time interval in the earth’s gravitational field. This can

Fig. 2: Physical explanation of an accelerated worldline in a
Minkowski space−ct diagram

be rewritten as

∆t =
(
1 − 2GMr

r2c2

)− 1
2

∆t0 , (3)

where the term GM/r2 is an acceleration a equal to g for r =
R, the earth’s radius, and finally

∆t =
(
1 − 2ar

c2

)− 1
2

∆t0 . (4)

By the equivalence principle, this is also the time dilation in
an accelerated frame of reference. For small accelerations,
using the first few terms of the Taylor expansion, this time
dilation expression can be written as

∆t ≃
(
1 +

ar
c2

)
∆t0 . (5)

The impact of acceleration on time dilation for small acceler-
ation will usually be small due to the c−2 dependency.

We note in particular the expressions for centripetal ac-
celeration a = v2/r in the case of circular motion

∆t =
(
1 − 2v2

c2

)− 1
2

∆t0 , (6)

which becomes for small accelerations, again using the first
few terms of the Taylor expansion,

∆t ≃
(
1 +
v2

c2

)
∆t0 . (7)

In this case, the impact can be significant, of the same order
as the relativistic Lorentz time dilation. Hence there is no
doubt that accelerated frames of reference also undergo time
dilation compared to unaccelerated (inertial) frames of refer-
ence.

4 The consequences of acceleration in special relativity

The presence of acceleration in a frame of reference provides
a means of determining the motion of that frame of reference
as acceleration can be easily detected compared to constant
velocity which cannot. Whereas in an inertial frame of refer-
ence there is no way of determining one’s velocity, this limi-
tation disappears in accelerated frames of reference.

Physical time dilation due to acceleration is a reality, as
is physical space contraction, which, from (1), is seen to have
the inverse of the functional form of (4), to give the accelera-
tion space contraction relation

∆x =
(
1 − 2ar

c2

) 1
2

∆x0 (8)

which for small accelerations, using the first few terms of the
Taylor expansion, becomes

∆x ≃
(
1 − ar

c2

)
∆x0 . (9)
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Till now, we have not discussed the so-called “twin para-
dox” of special relativity. This is not truly a paradox for there
is no way to avoid acceleration in the problem and it is thus
not a special relativity problem. Assume that by some miracle
we have twins moving at constant velocity with respect to one
another from departure to return with no acceleration and that
they are able to compare their age. It is important to notice
that in their inertial frames of reference, both proper times dτ,
the one in the frame of reference at rest with the earth, and the
one in the frame of reference at rest with the spaceship, are
equal to the physical time in both the frame of reference at
rest with the earth and the frame of reference at rest with the
spaceship. From the earth, it looks like the spaceship’s time is
dilated, and from the spaceship, it looks like the earth’s time
is dilated. It doesn’t matter as the time dilation in one loca-
tion as seen from the other location is apparent as seen in [1].
When the spaceship comes back to earth, the twins would see
that indeed they have the same age.

The problem can be recast in a simpler fashion. Suppose
instead of the earth and a spaceship, we have two spaceships
moving at constant relativistic speed with respect to one an-
other from start to finish with no acceleration, and that the
twins are able to compare their age at the start and the fin-
ish. One spaceship moves slowly because of engine prob-
lems, while the other moves at relativistic speeds. The reso-
lution would be as described in the previous paragraph: the
twins would see that indeed they have the same age at the
finish.

The complication in this problem is that forces have to be
applied to accelerate the spaceship, then decelerate it to turn
around, accelerate it again and finally decelerate it when it
comes back to the earth. The problem then needs to be treated
using accelerated frames of reference for those periods on the
spaceship. As we have seen in section 3, because of time di-
lation in accelerated frames of reference, the astronaut will
age less than its earth-bound twin, but only during periods
of acceleration. During periods of unaccelerated constant ve-
locity travel, there will be no differential aging between the
twins. However, the earth-bound twin is itself in an acceler-
ated frame of reference the whole time, so its time will also
be dilated. The details of who is older and younger will de-
pend on the details of the acceleration periods, with the earth-
bound twin’s time dilation depending on (2) and (6), and the
spaceship-bound twin’s time dilation depending on (4).

Comparing how these findings line up with the results of
Hafele’s circumglobal experiment [17, 18], it is important to
note that Hafele’s experiment was done the whole time in a
non-inertial accelerated frame of reference. Its results were
corrected for gravitational time dilation and centripetal ac-
celeration time dilation, the latter correction clearly showing
that acceleration has an impact on special relativity. The cen-
tripetal acceleration time dilation correction used by Hafele et
al [17] is similar to (6). One side effect of the experiment be-
ing conducted in gravitational and accelerated frames of ref-

erence is that it was possible to determine their motion, con-
trary to special relativity. The Lorentz time dilation would
then become a real effect in this purported test of the “twin
paradox”. There was no symmetry in the relative motions that
would have seen the plane stationary and the earth moving
given that gravitational and centripetal accelerations clearly
showed who was moving and at what velocity.

5 Discussion and conclusion

In this paper, we have considered the question of the impact
of acceleration in special relativity. Some physicists claim
that acceleration does not matter in special relativity – this
view is part of the Clock Hypothesis which is used to justify
the use of accelerated frames in special relativity. We have
found that the experimental support of the Clock Hypothesis
usually provided by the Mössbauer spectroscopy experiment
of Kündig [5] and the muon experiment of Bailey et al [2] is
questionable at best.

We have considered the case for the impact of accelera-
tion in special relativity and have derived an expression for
the time dilation in an accelerated frame of reference, based
on the equivalence principle of general relativity. We have
also derived an expression for space contraction in an accel-
erated frame of reference.

As a consequence, we have noted that the presence of ac-
celeration in a frame of reference provides a means of deter-
mining the motion of that frame of reference as acceleration
can be easily detected compared to constant velocity which
cannot – whereas in an inertial frame of reference there is no
way of determining one’s velocity, this limitation disappears
in accelerated frames of reference.

We have discussed the “twin paradox” of special relativ-
ity and have noted that this is not truly a paradox for there is
no way to avoid acceleration in the problem and it is thus not
a special relativity problem. We have noted that because of
time dilation in accelerated frames of reference, the astronaut
will age less than its earth-bound twin, but only during pe-
riods of acceleration, while during periods of unaccelerated
constant velocity travel, there will be no differential aging be-
tween the twins. However, as the earth-bound twin is itself in
an accelerated frame of reference the whole time, the details
of who is older and who is younger will depend on the details
of the acceleration periods of both twins. Finally we have re-
viewed how these findings line up with the results of Hafele’s
circumglobal experiment [17, 18] and find no contradiction.
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Theorem of Non-Returning and Time Irreversibility of Tachyon Kinematics
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Using the recently developed mathematical apparatus of the theory of universal kine-
matic sets, we prove that the hypothesis of the existence of material objects and inertial
reference frames moving with superluminal velocities in the general case does not lead
to the violation of the principle of causality, that is, to a possibility of the returning to the
own past. This result is obtained as the corollary of the abstract theorem on irreversibil-
ity, which gives the sufficient condition of time irreversibility for universal kinematic
sets.

1 Introduction

Subject of constructing the theory of super-light movement,
had been posed in the papers [1, 2] more than 50 years ago.
Despite the fact that on today tachyons (ie objects moving at
a velocity greater than the velocity of light) are not experi-
mentally detected, this subject remains being actual.

It is well known that among physicists it is popular the be-
lief that the hypothesis of the existence of tachyons leads to
temporal paradoxes, connected with the possibility of chang-
ing the own past. Conditions of appearing these time para-
doxes were carefully analyzed in [3]. It should be noted, that
in [3] superluminal motion is allowed only for particles or
signals whereas superluminal motion for reference frames is
forbidden. This fact does not give the possibility to bind the
own time with tachyon particle, and, therefore to determine
real direction of motion of the particle. In the paper [4] for
tachyon particles the own reference frames are axiomatically
introduced only for the case of one space dimension. Such
approach allows to determine real direction of motion of the
tachyon particle by more correct way, and so to obtain more
precise results.

In particular, in the paper [4] it was shown, that the hy-
pothesis of existence of material objects, moving with the
velocity, greater than the velocity of light, does not lead to
formal possibility of returning to the own past in general.
Meanwhile in the papers of E. Recami, V. Olkhovsky and
R. Goldoni [5–7], and and later in the papers of S. Medvedev
[8] as well as J. Hill and B. Cox [9] the generalized Lorentz
transforms for superluminal reference frames are deduced
in the case of three-dimension space of geometric variables.
In the paper [10] it was proven, that the above generalized
Lorentz transforms may be easy introduced for the more gen-
eral case of arbitrary (in particular infinity) dimension of the
space of geometric variables.

Further, in [11], using theory of kinematic changeable
sets, on the basis of the transformations [10], the mathemat-
ically strict models of kinematics, allowing the superluminal
motion for particles as well as for inertial reference frames,
had been constructed. Thus, the tachyon kinematics in the
sense of E.Recami, V. Olkhovsky and R. Goldoni are surely

mathematically strict objects. But, these kinematics are im-
possible to analyze on the subject of time irreversibility (that
is on existence the formal possibility of returning to the own
past), using the results of the paper [4], because in [4] com-
plete, multidimensional superluminal reference frames are
missing.

Moreover, it can be proved, that the axiom “AxSameFu-
ture” from [4, subsection 2.1] for these tachyon kinematics is
not satisfied. The paper [12] 1 is based on more general math-
ematical apparatus in comparison with the paper [4], namely
on mathematical apparatus of the theory of kinematic change-
able sets. In [12] the strict definitions of time reversibility
and time irreversibility for universal kinematics were given,
moreover in this paper it was proven, that all tachyon kine-
matics, constructed in the paper [11], are time reversible in
principle. In connection with the last fact the following ques-
tion arises:

Is it possible to build the certainly time-irreversible uni-
versal kinematics, which allows for reference frames moving
with any speed other than the speed of light, using the gen-
eralized Lorentz-Poincare transformations in terms of E. Re-
cami, V. Olkhovsky and R. Goldoni?

In the present paper we prove the abstract theorem on
non-returning for universal kinematics and, using this theo-
rem, we give the positive answer on the last question.

For further understanding of this paper the main concepts
and denotation system of the theories of changeable sets,
kinematic sets and universal kinematics, are needed. These
theories were developed in [11, 13–17]. Some of these pa-
pers were published in Ukrainian. That is why, for the con-
venience of readers, main results of these papers were “con-
verted” into English and collected in the preprint [18], where
one can find the most complete and detailed explanation of
these theories. Hence, we refer to [18] all readers who are
not familiar with the essential concepts. So, during citation
of needed main results we sometimes will give the dual refer-
ence of these results (in one of the papers [11, 13–17] as well
as in [18]).

1 Note, that main results of the paper [12] were announced in [19].
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2 Elementary-time states and changeable systems of
universal kinematics

Definition 1. Let F be any universal kinematics 1, l ∈
Lk (F ) be any reference frame of F and ω ∈ Bs(l) be any
elementary-time state in the reference frame l. The set

ω{l,F } = {(m, ⟨!m← l⟩ω) |m ∈ Lk (F )}

(where (x, y) is the ordered pair, composed of x and y) is
called by elementary-time state of the universal kinematics
F , generated by ω in the reference frame l.

Remark 1. In the case, where the universal kinematics F is
known in advance, we use the abbreviated denotation ω{l} in-
stead of the denotation ω{l,F }.

Assertion 1. Let F be any universal kinematics and l,m ∈
Lk (F ). Then for arbitrary elementary-time states ω ∈ Bs(l)
and ω1 ∈ Bs(m) the following assertions are equivalent:

1) ω{l} = ω{m}1 ; 2) ω1 = ⟨!m← l⟩ω.

Proof. 1. First, we prove, that statement 2) leads to the state-
ment 1). Consider any ω ∈ Bs(l) and ω1 ∈ Bs(m) such that
ω1 = ⟨!m← l⟩ω. Applying Definition 1 and [18, Property
1.12.1(3)] 2, we deduce

ω{m}1 = {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )} =
= {(p, ⟨! p←m⟩ ⟨!m← l⟩ω) | p ∈ Lk (F )} =
= {(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} = ω{l}.

2. Inversely, suppose, that ω ∈ Bs(l), ω1 ∈ Bs(m) and
ω{l} = ω{m}1 . Then, by Definition 1, we have

{(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} =
= {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )} . (1)

According to [18, Property 1.12.1(1)], we have, ⟨! l← l⟩ω =
ω. Hence, in accordance with (1), for element (l, ω) =
(l, ⟨! l← l⟩ω) ∈ {(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} we obtain the
correlation, (l, ω) ∈ {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )}. There-
fore, there exists the reference frame p0 ∈ Lk (F ) such that
(l, ω) = (p0, ⟨! p0←m⟩ω1). Hence we deduce l = p0, as
well ω = ⟨! p0←m⟩ω1 = ⟨! l←m⟩ω1. So, based on [18,
Properties 1.12.1(1,3)], we conclude, ω1 = ⟨!m←m⟩ω1 =

⟨!m← l⟩ ⟨! l←m⟩ω1 = ⟨!m← l⟩ω. □

The next corollary follows from Assertion 1.

Corollary 1. Let F be any universal kinematics. Then for
every l,m ∈ Lk (F ) and ω ∈ Bs(l) the following equality
holds:

ω{l} = (⟨!m← l⟩ω){m} .
1 Definition of universal kinematics can be found in [11, page 89] or [18,

page 156].
2 Reference to Property 1.12.1(3) means reference to the item 3 from the

group of properties “Properties 1.12.1”.

Assertion 2. Let F be any universal kinematics. Then the
set

Bs [l,F ] =
{
ω{l,F } | ω ∈ Bs(l)

}
(2)

does not depend of the reference frame l ∈ Lk (F ) (ie ∀l,m ∈
Lk (F ) Bs [l,F ] = Bs [m,F ]).

Proof. Consider arbitrary l,m ∈ Lk (F ). Using Corollary 1,
we have

Bs [l,F ] =
{
ω{l} | ω ∈ Bs(l)

}
=

=
{
(⟨!m← l⟩ω){m} | ω ∈ Bs(l)

}
.

Hence, according to [18, Corollary 1.12.6], we obtain

Bs [l,F ] =
{
(⟨!m← l⟩ω){m} | ω ∈ Bs(l)

}
=

=
{
ω{m}1 | ω1 ∈ Bs(m)

}
= Bs [m,F ] . □

Definition 2. Let F be any universal kinematics.

1. The set Bs(F ) = Bs [l,F ] (∀ l ∈ Lk (F )) is called by
the set of all elementary-time states of F .

2. Any subset Â ⊆ Bs(F ) is called by the (common)
changeable system of the universal kinematics F .

Assertion 3. Let F be any universal kinematics and l ∈
Lk (F ) be any reference frame of F . Then for every ele-
ment ω̂ ∈ Bs(F ) only one element ω0 ∈ Bs(l) exists such, that
ω̂ = ω{l}0 .

Proof. Consider any l ∈ Lk (F ) and ω̂ ∈ Bs(F ). By Defini-
tion 2 and Assertion 2 (formula (2)), we have

Bs(F ) = Bs [l,F ] =
{
ω{l} | ω ∈ Bs(l)

}
.

So, since ω̂ ∈ Bs(F ), the element ω0 ∈ Bs(l) must exist such
that the following equality is performed:

ω̂ = ω{l}0 . (3)

Let us prove that such element ω0 is unique. Assume that
ω̂ = ω{l}1 , where ω1 ∈ Bs(l). Then, from the equality (3) we
deduce, ω{l}0 = ω

{l}
1 . Hence, according to Assertion 1 and [18,

Property 1.12.1(1)], we obtain, ω1 = ⟨! l← l⟩ω0 = ω0. □

Definition 3. Let F be any universal kinematics, ω̂ ∈ Bs(F )
be any elementary-time state of F and l ∈ Lk (F ) be any
reference frame of F . Elementary-time state ω ∈ Bs(l) is
named by image of elementary-time state ω̂ in the reference
frame l if and only if ω̂ = ω{l}.

In accordance with Assertion 3, every elementary-time
state ω̂ ∈ Bs(F ) always has only one image in any reference
frame l ∈ Lk (F ). Image of elementary-time state ω̂ ∈ Bs(F )
in the reference frame l ∈ Lk (Z) will be denoted via ω̂{l,F }
(in the cases, where the universal kinematics F is known in
advance, we use the abbreviated denotation ω̂{l}).
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Thus, according to Definition 3, for arbitrary ω̂ ∈ Bs(F )
the following equality holds:(

ω̂{l}
){l}
= ω̂. (4)

From the other hand, if for any reference frame l ∈ Lk (F )
and any fixed elementary-time state ω ∈ Bs(l), we denote
ω̂ := ω{l}, then by Definition 3, we will receive, ω = ω̂{l}.
Therefore we have:(

ω{l}
)
{l}
= ω (∀l ∈ Lk (F ) ∀ω ∈ Bs(l)) . (5)

From equalities (4) and (5) we deduce the following
corollary:

Corollary 2. Let F be any universal kinematics and l ∈
Lk (F ) be any reference frame of F . Then:

1. The mapping (·){l} is bijection from Bs(l) onto Bs(F ).
2. The mapping (·){l} is bijection from Bs(F ) onto Bs(l).
3. The mapping (·){l} is inverse to the mapping (·){l}.

Assertion 4. Let F be any universal kinematics and l,m ∈
Lk (F ) be any reference frames F . Then the following state-
ments are performed:

1. For every ω̂ ∈ Bs(F ) the equality ω̂{m} = ⟨!m← l⟩ ω̂{l}
holds.

2. For each ω ∈ Bs(l) the equality
(
ω{l}

)
{m}
= ⟨!m← l⟩ω

is true.

Proof. 1) Chose any ω̂ ∈ Bs(F ). Applying Corollary 1 to the
elementary-time state ω̂{l} ∈ Bs(l) and using equality (4), we
obtain (⟨!m← l⟩ ω̂{l}){m} = (

ω̂{l}
){l}
= ω̂.

Thence, using equality (5), we have

ω̂{m} =
((⟨!m← l⟩ ω̂{l}){m}){m} = ⟨!m← l⟩ ω̂{l}.

2) Consider any ω ∈ Bs(l). Applying Corollary 1 as well
as equality (5), we deliver(

ω{l}
)
{m}
=

(
(⟨!m← l⟩ω){m}

)
{m}
= ⟨!m← l⟩ω. □

Let F be any universal kinematics. The set Â{l,F } ={
ω̂{l,F } | ω̂ ∈ Â

}
is called image of changeable system Â ⊆

Bs(F ) in the reference frame l ∈ Lk (F ).
Any changeable system A ⊆ Bs(l) in the reference frame

l ∈ Lk (F ) always generates the (common) changeable sys-
tem A{l,F } :=

{
ω{l,F } | ω ∈ A

}
⊆ Bs(F ).

Remark 2. In the cases, where universal kinematics F is
known in advance, we use the abbreviated denotations Â{l}
and A{l} instead of Â{l,F } and A{l,F } (correspondingly).

Applying equalities (4) and (5), we obtain the equalities:(
Â{l}

){l}
= Â and

(
A{l}

)
{l}
= A

(for arbitrary universal kinematics F , reference frame l ∈
Lk (F ) and changeable systems Â ⊆ Bs(F ) as well A ⊆
Bs(l)).

3 Chain paths of universal kinematics and definition of
time irreversibility

Definition 4. Let F be any universal kinematics. Change-
able system Â ⊆ Bs(F ) is called piecewise chain change-
able system if and only if there exist the sequences of change-
able systems Â1, · · · , Ân ⊆ Bs(F ) and reference frames
l1, · · · , ln ∈ Lk (F ) (n ∈ N) satisfying the following condi-
tions:

(a)
(
Âk

)
{lk}
∈ Ll (lk)

(
∀k ∈ 1, n

)
, 1 where definition of

set Ll (lk) = Ll ((lk )̂ ) can be found in [18, pages
63, 88, 156];

(b)
∪n

k=1 Âk = Â,

and, moreover, in the case n ≥ 2 the following additional
conditions are satisfied:

(c) Âk ∩ Âk+1 , ∅
(
∀k ∈ 1, n − 1

)
;

(d) For each k ∈ 1, n − 1 and arbitrary ω1 ∈
(
Âk \ Âk+1

)
{lk}

,

ω2 ∈
(
Âk ∩ Âk+1

)
{lk}

the inequality tm (ω1) <lk tm (ω2)
holds.

(e) For every k ∈ 2, n and arbitrary ω1 ∈
(
Âk−1 ∩ Âk

)
{lk}

,

ω2 ∈
(
Âk \ Âk−1

)
{lk}

the inequality tm (ω1) <lk tm (ω2)
is performed.

In this case the ordered composition A =(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
will be named by the chain

path of universal kinematics F .

Definition 5. Let F be any universal kinematics.

(a) Changeable system A ⊆ Bs(l) is refereed to as
geometrically-stationary in the reference frame l ∈
Lk (F ) if and only if A ∈ Ll(l) and for arbitrary
ω1, ω2 ∈ A the equality bs

(
Q⟨l⟩ (ω1)

)
= bs

(
Q⟨l⟩ (ω2)

)
holds.

(b) The set of all geometrically-stationary changeable sys-
tems in the reference frame l is denoted via Lg(l,F ). In
the cases, where the universal kinematics F is known
in advance, we use the abbreviated denotation Lg(l).

(c) The chain path A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
in F (n ∈

N) is called by piecewise geometrically-stationary if
and only if ∀k ∈ 1, n

(
Âk

)
{lk}
∈ Lg (lk).

From the physical point of view piecewise geometrically-
stationary chain path may be interpreted as process of “va-
grancy” of observer (or some material particle or signal),
which moves by means of “jumping” from previous reference
frame to the next frame with a finite number of times.

Definition 6. Let F be any universal kinematics and let A =(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
be arbitrary chain path in F .

1 Further we denote via m, n (m, n ∈ N, m ≤ n) the set m, n = {m, · · · , n}.
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1. Element ω̂s ∈ Bs(F ) is called by start element of the
path A , if and only if ω̂s ∈ Â1 and for every ω̂ ∈ Â1
the inequality tm

(
(ω̂s){l1}

)
≤l1 tm

(
ω̂{l1}

)
is performed.

2. Element ω̂ f ∈ Bs(F ) is called by final element of the
path A , if and only if ω̂ f ∈ Ân and for every ω̂ ∈ Ân

the inequality tm
(
ω̂{ln}

) ≤ln tm
((
ω̂ f

)
{ln}

)
holds.

3. The chain path A , which owns (at least one) start
element and (at least one) final element, is called by
closed.

Assertion 5. Any chain path A of arbitrary universal kine-
maticsF can not have more, than one start element and more,
than one final element.

Proof. (a) Let ω̂s, ω̂x be two start elements of the chain
path A =

(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
. Then, by Definition

6, we have ω̂s, ω̂x ∈ Â1, tm
(
(ω̂s){l1}

)
≤l1 tm

(
(ω̂x){l1}

)
and

tm
(
(ω̂x){l1}

)
≤l1 tm

(
(ω̂s){l1}

)
. Therefore we get

tm
(
(ω̂s){l1}

)
= tm

(
(ω̂x){l1}

)
. (6)

Since ω̂s, ω̂x ∈ Â1, then (ω̂s){l1} , (ω̂x){l1} ∈
(
Â1

)
{l1}

, where,
in accordance with Definition 4 (subitem (a)), we have,(
Â1

)
{l1}
∈ Ll (l1). That is, according to [18, Assertion 1.7.5

(item 1)],
(
Â1

)
{l1}

is a function from Tm (l1) into Bs (l1). So,
using equality ω = (tm (ω) , bs (ω)) (ω ∈ Bs (l1)) as well as
formula (6), we obtain

bs
(
(ω̂s){l1}

)
=

(
Â1

)
{l1}

(
tm

(
(ω̂s){l1}

))
=

=
(
Â1

)
{l1}

(
tm

(
(ω̂x){l1}

))
= bs

(
(ω̂x){l1}

)
.

Using the last equality and equality (6), we deduce, (ω̂s){l1} =(
tm

(
(ω̂s){l1}

)
, bs

(
(ω̂s){l1}

))
=

(
tm

(
(ω̂x){l1}

)
, bs

(
(ω̂x){l1}

))
=

(ω̂x){l1}. Hence, according to formula (4), we deliver ω̂s =(
(ω̂s){l1}

){l1}
=

(
(ω̂x){l1}

){l1}
= ω̂x.

(c) Similarly it can be proven that the chain path A can
not have more, than one final element. □

Further the start element of the chain path A of the uni-
versal kinematics F will be denoted via po (A ,F ), or via
po (A ). The final element of the chain path A will be de-
noted via ki (A ,F ), or via ki (A ). Where the denotations
po (A ) and ki (A ) are used in the cases when they do not
cause misunderstanding. Thus, for every closed chain path
A both start and final elements (po (A ) and ki (A )) always
exist.

Definition 7. Closed chain path A of universal kinemat-
ics F is refereed to as geometrically-cyclic in the refer-
ence frame l ∈ Lk (F ) if and only if bs

(
Q⟨l⟩

(
po (A ){l}

))
=

bs
(
Q⟨l⟩

(
ki (A ){l}

))
.

Definition 8. Universal kinematics F is called time irre-
versible if and only if for every reference frame l ∈ Lk (F )
and for each chain path A , geometrically-cyclic in the frame
l and piecewise geometrically-stationary in F , it is performed
the inequality tm

(
po (A ){l}

)
≤l tm

(
ki (A ){l}

)
.

Universal kinematics F is called time reversible if and
only if it is not time irreversible.

The physical sense of time irreversibility notion is that in
time irreversible kinematics there is not any process or object
which returns to the begin of the own path at the past, moving
by means of “jumping” from previous reference frame to the
next frame. So, there are not temporal paradoxes in these
kinematics.

4 Direction of time between reference frames of univer-
sal kinematics

For formulation main theorem we need some notions, con-
nected with direction of time between reference frames.

Definition 9. Let F be any universal kinematics.
1. We say that reference frame m ∈ Lk (F ) is time-

nonnegative relatively the reference frame l ∈ Lk (F )
(in the universal kinematics F ) (denotation is m ⇑F
l) if and only if for arbitrary w1,w2 ∈ Mk (l) such
that bs (w1) = bs (w2) and tm (w1) ≤l tm (w2)
it is performed the inequality, tm ([m← l] w1) ≤m
tm ([m← l] w2).

2. We say that reference frame m ∈ Lk (F ) is time-
positive in F relatively the reference frame l ∈ Lk (F )
(denotation is m ⇑+F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and
tm (w1) <l tm (w2) it is performed the inequality,
tm ([m← l] w1) <m tm ([m← l] w2).

3. We say that reference frame m ∈ Lk (F ) is time-
nonpositive in F relatively the reference frame l ∈
Lk (F ) (denotation is m ⇓F l) if and only if for ar-
bitrary w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2)
and tm (w1) ≤l tm (w2) it is performed the inequality,
tm ([m← l] w1) ≥m tm ([m← l] w2).

4. We say that reference frame m ∈ Lk (F ) is time-
negative in F relatively the reference frame l ∈ Lk (F )
(denotation is m ⇓−F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and
tm (w1) <l tm (w2) it is performed the inequality,
tm ([m← l] w1) >m tm ([m← l] w2).

5. The universal kinematics F is named by weakly time-
positive if and only if there exist at least one reference
frame l0 ∈ Lk (F ) such that the correlation l0 ⇑+F l
holds for every reference frame l ∈ Lk (F ).

Remark 3. Apart from weak time-positivity we can introduce
other, more strong, form of time-positivity. We say that uni-
versal kinematics F is time-positive if and only if for arbi-
trary reference frames l,m ∈ Lk (F ) the correlation l ⇑+F m
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holds. It is not hard to prove that every kinematics of kind
F = UP (H,B, c) (connected with classical special relativity
and introduced in [11] and [18, Section 24]) is time-positive.

Assertion 6. For arbitrary reference frames l,m ∈ Lk (F )
of any universal kinematics F the following statements are
performed.

1) If m ⇑+F l, then m ⇑F l.
2) If m ⇓−F l, then m ⇓F l.

Proof. 1) Indeed, let l,m ∈ Lk (F ) and m ⇑+F l. Then
for every w1,w2 ∈ Mk (l) such, that bs (w1) = bs (w2) and
tm (w1) ≤l tm (w2), we deduce the following:

(a) In the case tm (w1) <l tm (w2), by Definition 9, item
2, we get, tm ([m← l] w1) <m tm ([m← l] w2).

(b) In the case tm (w1) = tm (w2), we have w1 =

(tm (w1) , bs (w1)) = (tm (w2) , bs (w2)) = w2, and so
tm ([m← l] w1) = tm ([m← l] w2).

2) Second item of this Assertion can be proven similarly.
□

5 Theorem of Non-Returning

Theorem 1. Any weakly time-positive universal kinematics
F is time irreversible.

To prove Theorem 1 we need a few auxiliary assertions.

Assertion 7. Let Â ⊆ Bs(F ) be changeable system of univer-
sal kinematics F such, that Â{l0} ∈ Lg (l0) for some reference
frame l0 ∈ Lk (F ). Let l ∈ Lk (F ) be reference frame, satis-
fying condition l ⇑F l0.

Then for arbitrary ω̂1, ω̂2 ∈ Â the inequality
tm

(
(ω̂1){l0}

)
≤l0 tm

(
(ω̂2){l0}

)
assures the the inequality

tm
(
(ω̂1){l}

)
≤l tm

(
(ω̂2){l}

)
.

Proof. Suppose that, under conditions of the assertion, we
have ω̂1, ω̂2 ∈ Â and tm

(
(ω̂1){l0}

)
≤l0 tm

(
(ω̂2){l0}

)
. Accord-

ing to Definition of Minkowski coordinates (see [11, formula
(2)] or [18, formula (2.3)]), we have tm (ω) = tm

(
Q⟨l0⟩(ω)

)
(∀ω ∈ Bs (l0)). So, we get

tm
(
Q⟨l0⟩

(
(ω̂1){l0}

))
≤l0 tm

(
Q⟨l0⟩

(
(ω̂2){l0}

))
. (7)

Since (ω̂1){l0} , (ω̂2){l0} ∈ Â{l0} (where Â{l0} ∈ Lg (l0)) then, by
Definition 5 (items (a),(b)), we have

bs
(
Q⟨l0⟩

(
(ω̂1){l0}

))
= bs

(
Q⟨l0⟩

(
(ω̂2){l0}

))
. (8)

Taking into account that l ⇑F l0 and using Definition 9 (item
1) as well as formulas (7), (8), we get the inequality:

tm
(
[l← l0] Q⟨l0⟩

(
(ω̂1){l0}

))
≤l tm

(
[l← l0] Q⟨l0⟩

(
(ω̂2){l0}

))
.

Thence, using [18, formula (3.2)], we obtain

tm
(
Q⟨l⟩

(
⟨! l← l0⟩ (ω̂1){l0}

))
≤l

≤l tm
(
Q⟨l⟩

(
⟨! l← l0⟩ (ω̂2){l0}

))
.

Applying the last inequality as well as Assertion 4, we deduce
the inequality:

tm
(
Q⟨l⟩

(
(ω̂1){l}

))
≤l tm

(
Q⟨l⟩

(
(ω̂2){l}

))
. (9)

According to Definition of Minkowski coordinates (see [11,
formula (2)] or [18, formula (2.3)]), for every ω ∈ Bs(l) we
have the equality tm

(
Q⟨l⟩(ω)

)
= tm (ω). That is why from the

inequality (9) it follows the desired inequality tm
(
(ω̂1){l}

)
≤l

tm
(
(ω̂2){l}

)
. □

Assertion 8. Let, A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Â n, l n

))
(n ∈ N)

be closed, piecewise geometrically-stationary chain path of
universal kinematics F and l ∈ Lk (F ) be reference frame
such that l ⇑F l i for every i ∈ 1, n. Then for arbitrary ω̂ ∈ Â
the following inequality holds:

tm
(
po (A ){l}

)
≤l tm

(
ω̂{l}

) ≤l tm
(
ki (A ){l}

)
. (10)

Proof. Let F be universal kinematics and A =(
Â,

(
Â1, l1

)
, · · · ,

(
Â n, l n

))
(n ∈ N) be closed, piecewise

geometrically-stationary chain path of F . Let, l ∈ Lk (F ) be
reference frame such that l ⇑F l i (∀ i ∈ 1, n).

1) First we prove that for any ω̂ ∈ Â it holds the inequal-
ity:

tm
(
po (A ){l}

)
≤l tm

(
ω̂{l}

)
. (11)

By Definition 4 (item (b)), Â =
∪n

k=1 Âk. So, it is sufficient to
prove the inequality (11) for the cases ω̂ ∈ Âk (k ∈ 1, n).

1.a) First we prove the inequality (11) for ω̂ ∈ Â1. Ac-
cording to Definition 6 (item 1), for ω̂ ∈ Â1 we obtain that
po (A ) ∈ Â1 and

tm
(
po (A ){l1}

)
≤l1 tm

(
ω̂{l1}

)
. (12)

According to the above, we have ω̂ ∈ Â1 and po (A ) ∈ Â1.
Moreover, by Definition 5 (item (c)), we get,

(
Â1

)
{l1}
∈

Lg (l1). By conditions of Assertion, we have, l ⇑F l1. So,
in accordance with Assertion 7, the correlation (12) stipulates
the inequality tm

(
po (A ){l}

)
≤l tm

(
ω̂{l}

)
. Hence, in the case

ω̂ ∈ Â1, the inequality (11) has been proven. Moreover, the
last inequality has been proven for all ω̂ ∈ Â in the case n = 1.
So, further we consider, that n > 1.

1.b) Assume, that inequality (11) is performed for all
ω̂ ∈ Âk−1, where k ∈ 2, n. And, let us prove, that then this
inequality is true for each ω̂ ∈ Âk.

In the case ω̂ ∈ Âk ∩ Âk−1 the inequality (11) is true in
accordance with inductive hypothesis. Hence, it remains to
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prove the last inequality for every ω̂ ∈ Âk \ Âk−1. According
to item (c) of Definition 4, we have Âk ∩ Âk−1 , ∅. Hence, at
least one element η̂ ∈ Âk ∩ Âk−1 exists. Since,

η̂ ∈ Âk ∩ Âk−1 and ω̂ ∈ Âk \ Âk−1, (13)

then we get η̂{lk} ∈
(
Âk ∩ Âk−1

)
{lk}

, ω̂{lk} ∈
(
Âk \ Âk−1

)
{lk}

.
Therefore, according to item (e) of Definition 4, we deliver

tm
(
η̂{lk}

) ≤lk tm
(
ω̂{lk}

)
. (14)

According to (13), we have η̂, ω̂ ∈ Âk, where, by item (c) of
Definition 5,

(
Âk

)
{lk}
∈ Lg (lk). Since l ⇑F lk, then taking into

account inequality (14) and Assertion 7 we deduce

tm
(
η̂{l}

) ≤l tm
(
ω̂{l}

)
. (15)

According to (13), we have η̂ ∈ Âk−1. So, by inductive hy-
pothesis, we deliver

tm
(
po (A ){l}

)
≤l tm

(
η̂{l}

)
. (16)

Inequalities (15) and (16) assure inequality (11).
Thus, by Principle of mathematical induction, inequality

(11) is true for arbitrary ω̂ ∈ ∪n
k=1 Âk = Â.

2) Now we are aiming to prove, that for any ω̂ ∈ Â it
holds the inequality:

tm
(
ω̂{l}

) ≤l tm
(
ki (A ){l}

)
. (17)

2.a) First we prove the inequality (17) for ω ∈ Ân. Ac-
cording to Definition 6 (item 2), for ω̂ ∈ Ân we obtain that
ki (A ) ∈ Ân and

tm
(
ω̂{ln}

) ≤ln tm
(
ki (A ){ln}

)
. (18)

According to the above, we have ω̂ ∈ Ân and ki (A ) ∈ Ân.
Moreover, by Definition 5 (item (c)), we get

(
Ân

)
{ln}
∈ Lg (ln).

By conditions of Assertion, we have l ⇑F ln. So, in accor-
dance with Assertion 7, the correlation (18) stipulates the in-
equality (17). Hence, in the case ω̂ ∈ Ân, the inequality (17) is
proven. Moreover, the last inequality is proven for all ω̂ ∈ Â
in the case n = 1. So, further we consider, that n > 1.

2.b) Assume, that inequality (17) is performed for all ω̂ ∈
Âk+1, where k ∈ 1, n − 1. And, let us prove, that then this
inequality is true for each ω̂ ∈ Âk.

In the case ω ∈ Âk ∩ Âk+1 the inequality (17) is true in
accordance with inductive hypothesis. Hence, it remains to
prove the last inequality for every ω̂ ∈ Âk \ Âk+1. According
to item (c) of Definition 4, we have Âk ∩ Âk+1 , ∅. Hence, at
least one element η̂ ∈ Âk ∩ Âk+1 exists. Taking into account
that

η̂ ∈ Âk ∩ Âk+1 and ω̂ ∈ Âk \ Âk+1, (19)

we get η̂{lk} ∈
(
Âk ∩ Âk+1

)
{lk}

, ω̂{lk} ∈
(
Âk \ Âk+1

)
{lk}

. There-
fore, according to item (d) of Definition 4, we deliver

tm
(
ω̂{lk}

) ≤lk tm
(
η̂{lk}

)
. (20)

According to (19), we have η̂, ω̂ ∈ Âk, where
(
Âk

)
{lk}
∈ Lg (lk)

by item (c) of Definition 5. Since l ⇑F lk then, taking into
account inequality (20) and Assertion 7, we deduce

tm
(
ω̂{l}

) ≤l tm
(
η̂{l}

)
. (21)

According to (19), we have η̂ ∈ Âk+1. So, by inductive hy-
pothesis, we deliver

tm
(
η̂{l}

) ≤l tm
(
ki (A ){l}

)
. (22)

Inequalities (21) and (22) assure inequality (17). Thus,
by Principle of mathematical induction, inequality (17) is true
for arbitrary ω̂ ∈ ∪n

k=1 Âk = Â.

Inequality (10) follows from (11) and (17). □

Proof of Theorem 1. LetF be weakly time-positive universal
kinematics. Then, by Definition 9, there exists the reference
frame l0 ∈ Lk (F ) such that

∀m ∈ Lk (F ) l0 ⇑+F m . (23)

Let A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
(n ∈ N) be piecewise

geometrically-stationary chain path in F and, moreover, A
is geometrically-cyclic relatively some reference frame l ∈
Lk (F ). By Definition 7, A is closed chain path. According
to Assertion 6, correlation (23) leads to the correlation l0 ⇑F
lk (∀k ∈ 1, n). Hence, applying Assertion 8, we ensure

tm
(
po (A ){l0}

)
≤l0 tm

(
ki (A ){l0}

)
. (24)

Assume, that tm
(
ki (A ){l}

)
<l tm

(
po (A ){l}

)
. Then, by Defi-

nition of Minkowski coordinates (see [11, formula (2)] or [18,
formula (2.3)]), we obtain

tm
(
Q⟨l⟩

(
ki (A ){l}

))
<l tm

(
Q⟨l⟩

(
po (A ){l}

))
. (25)

Since the path A is geometrically-cyclic relatively the refer-
ence frame l, then, by Definition 7, we have

bs
(
Q⟨l⟩

(
po (A ){l}

))
= bs

(
Q⟨l⟩

(
ki (A ){l}

))
. (26)

Since (in accordance with (23)) l0 ⇑+F l, then, by Definition
9 (item 2), from the correlations (25), and (26), we get the
inequality:

tm
(
[l0← l] Q⟨l⟩

(
ki (A ){l}

))
<l0

<l0 tm
(
[l0← l] Q⟨l⟩

(
po (A ){l}

))
.
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Thence, using [18, formula (3.2)] , we deduce the inequality:

tm
(
Q⟨l0⟩

(
⟨! l0← l⟩ ki (A ){l}

))
<l0

<l0 tm
(
Q⟨l0⟩

(
⟨! l0← l⟩ po (A ){l}

))
.

Taking into account Assertion 4, the last inequality
can be reduced to the form, tm

(
Q⟨l0⟩

(
ki (A ){l0}

))
<l0

tm
(
Q⟨l0⟩

(
po (A ){l0}

))
, and, by Definition of Minkowski co-

ordinates (see [11, formula (2)] or [18, formula (2.3)])), we
assure

tm
(
ki (A ){l0}

)
<l0 tm

(
po (A ){l0}

)
.

But, the last inequality contradicts to the correlation
(24). Therefore, hypothesis affirming, that tm

(
ki (A ){l}

)
<l

tm
(
po (A ){l}

)
is false. Consequently we have

tm
(
po (A ){l}

)
≤l tm

(
ki (A ){l}

)
. (27)

Thus, for each reference frame l ∈ Lk (F ) and for each
chain path A , geometrically-cyclic in the frame l and piece-
wise geometrically-stationary in F , it holds the inequality
(27). So, by Definition 8, kinematics F is time irreversible,
which must be proved. □

6 Certainly time irreversibility. Strengthened version of
theorem of non-returning

Recall, that in the papers [17, Definition 6], [18, Definition
3.25.2] the notion of equivalence of universal kinematics rel-
atively coordinate transform had been introduced. According
to these papers, we denote equivalent relatively coordinate
transform kinematics F1 and F2 via F1 [≡]F2.

Definition 10. We say that universal kinematics F is cer-
tainly time irreversible if and only if arbitrary universal kine-
matics F1 such, that F [≡]F1 is time irreversible. In the op-
posite case we will say that universal kinematics F is condi-
tionally time reversible.

Since, according to [17, Assertion 3] (see also [18, Asser-
tion 3.25.1]), for each universal kinematicsF it is fulfilled the
correlation F [≡]F , then we receive the following Corollary
from Definition 10:

Corollary 3. Any certainly time irreversible universal kine-
matics F is time irreversible.

The physical sense of certain time irreversibility notion is
that in certainly time irreversible kinematics temporal para-
doxes are impossible basically, that is there is not potential
possibility to affect the own past by means of “traveling” and
“jumping” between reference frames. Whereas, in time ir-
reversible, but conditionally time reversible kinematics such
potential possibility exists, but it is not realized in the scenario
of evolution, acting in this kinematics.

Assertion 9. Let universal kinematics F be weakly time-
positive. Then every universal kinematics F1 such that
F1 [≡]F is weakly time-positive also.

Proof. Let F be weakly time-positive universal kinematics
and F1 [≡]F . Recall, that in [18, Definition 3.27.3] for every
reference frame m ∈ Lk (F ) it was introduced the reference
frame m ⇂F1 , related with m in the universal kinematics F1:

m ⇂F1 := lkind(m) (F1) . (28)

Since kinematics F is weakly time-positive then, by Defini-
tion 9, the reference frame l0 ∈ Lk (F ) exists such that for
each reference frame l ∈ Lk (F ) the correlation l0 ⇑+F l holds.
Denote:

l
(1)
0 := l0 ⇂F1 .

Let us consider any reference frame l(1) ∈ Lk (F1). Denote:
l := l(1) ⇂F ∈ Lk (F ). Then, according to [18, Properties
3.27.1] and formula (28), we have

l
(1) = l ⇂F1= lkind(l) (F1) .

Hence, taking into account [18, Definition 3.25.2 (item 2)],
formula (28) and [18, Property 3.25.1(1)], we get

Mk
(
l

(1)
0 ;F1

)
= Mk

(
lkind(l0) (F1) ;F1

)
=

= Mk
(
lkind(l0) (F ) ;F )

= Mk (l0;F ) ;

Mk
(
l
(1);F1

)
= Mk (l;F ) . (29)

Similarly applying [18, Definition 3.25.2 (item 2)] we ensure
the equalities:

Tm
(
l

(1)
0

)
= Tm (l0) ; Tm

(
l
(1)

)
= Tm (l) (30)

(where (in accordance with [18, Subsection 6.3]) Tm(m) =
(Tm (m) ,≤m) (∀m ∈ Lk (F ) ∪ Lk (F1))). Moreover, ac-
cording to [18, Property 3.25.1(1) and Definition 3.25.2
(item 3)], we obtain

[l0← l, F ] =
[
lkind(l0) (F )← lkind(l) (F ) , F ]

=

=
[
lkind(l0) (F1)← lkind(l) (F1) , F1

]
=

=
[
l0 ⇂F1 ← l ⇂F1 , F1

]
=

[
l

(1)
0 ← l

(1), F1

]
. (31)

Taking into account (29), let us consider any ele-
ments w1,w2 ∈ Mk

(
l(1);F1

)
= Mk (l;F ) such

that bs (w1) = bs (w2) and tm (w1) <l(1) tm (w2).
Then, in accordance with (30), we obtain the inequal-
ity tm (w1) <l tm (w2). Since (as it was mentioned be-
fore) l0 ⇑+F l, then, by Definition 9 (item 2), we ob-
tain the inequality tm ([l0← l, F ] w1) <l0 tm ([l0← l, F ] w2).
Thence, using (31) and (30), we ensure the inequality,
tm

([
l
(1)
0 ← l(1), F1

]
w1

)
<
l
(1)
0

tm
([
l
(1)
0 ← l(1), F1

]
w2

)
. By Def-

inition 9 (item 2), taking into account the arbitrariness of
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choice elements w1,w2 ∈ Mk
(
l(1);F1

)
such, that bs (w1) =

bs (w2) and tm (w1) <l(1) tm (w2), we obtain the correlation
l
(1)
0 ⇑+F1

l(1) (for every reference frame l(1) ∈ Lk (F1)). Hence,
by Definition 9, kinematics F1 is weakly time-positive. □

Applying Assertion 9 as well as Theorem 1, we obtain
the following (strengthened) variant of Theorem of Non-
Returning:

Theorem 2. Any weakly time-positive universal kinematics
F is certainly time irreversible.

7 Example of certainly time irreversible tachyon
kinematics

In this section we build the certainly time-irreversible uni-
versal kinematics, which allows for reference frames moving
with any speed other than the speed of light, using the gen-
eralized Lorentz-Poincare transformations in terms of E. Re-
cami, V. Olkhovsky and R. Goldoni.

Let (H, ∥·∥ , ⟨·, ·⟩) be a Hilbert space over the real field
such, that dim (H) ≥ 1, where dim (H) is dimension of the
space H. Emphasize, that the condition dim(H) ≥ 1 should
be interpreted in a way that the space H may be infinite-
dimensional. Let L (H) be the space of (homogeneous) lin-
ear continuous operators over the space H. Denote by L× (H)
the space of all operators of affine transformations over the
space H, that is L× (H) =

{
A[a] | A ∈ L (H) , a ∈ H}, where

A[a]x = Ax + a, x ∈ H. The Minkowski space over the
Hilbert space H is defined as the Hilbert space M (H) =
R × H = {(t, x) | t ∈ R, x ∈ H}, equipped by the inner product
and norm: ⟨w1,w2⟩ = ⟨w1,w2⟩M(H) = t1t2 + ⟨x1, x2⟩, ∥w1∥ =
∥w1∥M(H) =

(
t2
1 + ∥x1∥2

)1/2
(where wi = (ti, xi) ∈ M (H) ,

i ∈ {1, 2}) ( [10, 18]). In the spaceM (H) we select the next
subspaces: H0 := {(t, 0) | t ∈ R}, H1 := {(0, x) | x ∈ H} with 0
being zero vector. Then,M (H) = H0⊕H1,where ⊕means the
orthogonal sum of subspaces. Denote: e0 := (1, 0) ∈ M (H).
Introduce the orthogonal projectors on the subspaces H1 and
H0:

Xw = (0, x) ∈ H1; T̂w = (t, 0) = T (w) e0 ∈ H0,

where T (w) = t (w = (t, x) ∈ M (H)) .

Let B1 (H1) be the unit sphere in the space H1 (B1 (H1) =
{x ∈ H1 | ∥x∥ = 1}). Any vector n ∈ B1 (H1) generates the fol-
lowing orthogonal projectors, acting inM (H):

X1 [n] w = ⟨n,w⟩n (w ∈ M (H));
X⊥1 [n] = X − X1 [n] .

Recall, that an operator U ∈ L (H) is referred to as unitary on
H, if and only if ∃U−1 ∈ L (H) and ∀ x ∈ H ∥Ux∥ = ∥x∥. Let
U (H1) be the set of all unitary operators over the space H1.

Fix some real number c such, that 0 < c < ∞. Denote:

PT
∓
fin (H, c) :=Wλ,c [s,n, J; a]

∣∣∣∣∣∣∣∣∣∣∣
λ ∈ [0,∞) \ {c},
s = sign (c − λ),
J ∈ U (H1) , n ∈ B1 (H1) ,
a ∈ M (H)

 , (32)

where Wλ,c [s,n, J; a] ∈ L× (M (H)) (λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1), n ∈ B1 (H1), a ∈ M (H)) are operators
of generalized Lorentz-Poincare Transformations in the sense
of E. Recami, V. Olkhovsky and R. Goldoni, introduced in
[10, 11, 18]:

Wλ,c [s,n, J; a]w =Wλ,c [s,n, J] (w + a), where

Wλ,c [s,n, J]w =

(
sT (w) − λc2 ⟨n,w⟩

)
√∣∣∣1 − λ2

c2

∣∣∣ e0+

+ J

λT (w) − s ⟨n,w⟩√∣∣∣1 − λ2

c2

∣∣∣ n + X⊥1 [n] w

 . (33)

According to [18, 20], every operator of kind Wλ,c [s,n, J; a]
belongs to Pk (H), where Pk (H) is the set of all operators
S ∈ L× (M (H)), which have the continuous inverse operator
S−1 ∈ L× (M (H)). Using results of the papers [18, 20], we
can calculate the operators, inverse to the operators of kind
Wλ,c [s,n, J] and Wλ,c [s, n, J; a].

Lemma 1. For arbitrary c ∈ (0,∞), λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1) and n ∈ B1 (H1) the following equality
holds:(

Wλ,c [s,n, J]
)−1
=

=Wλ,c

[
s sign (c − λ), sign (c − λ)Jn, J−1

]
. (34)

Proof. Consider arbitrary 0 < c < ∞, λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1) and n ∈ B1 (H1). According to [10, page
143] or [18, formula (2.86)], operator Wλ,c [s,n, J] may be
represented in the form:

Wλ,c [s,n, J] = Uθ,c [s,n, J] , (35)

where

θ =
1 − λc√∣∣∣1 − λ2

c2

∣∣∣
(
λ = c

1 − θ |θ|
1 + θ |θ|

)
, −1 ≤ θ ≤ 1.

Hence, according to [20, Corollary 5.1] or [18, Corollary
2.18.3], we obtain, that

(
Wλ,c [s,n, J]

)−1 ∈ L (M (H)), and
moreover:(

Wλ,c [s,n, J]
)−1
=

(
Uθ,c [s,n, J]

)−1
=

= Uθs,c

[
sθ, sθJn, J−1

]
, (36)

where sθ = S(s, θ) =

1, s, θ > 0
−1, s < 0 or θ < 0.
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In the case s = 1 we have, sθ = sign θ = sign
 1− λc√∣∣∣∣1− λ2c2

∣∣∣∣
 =

sign (c−λ). Hence, in this case, using (36) and (35), we obtain(
Wλ,c [s,n, J]

)−1
= Uθ,c

[
sθ, sθJn, J−1

]
=

=Wλ,c

[
sθ, sθJn, J−1

]
=

=Wλ,c

[
sign (c − λ), sign (c − λ)Jn, J−1

]
(s = 1). (37)

Now we consider the case s = −1 (θs = θ−1). Applying
(36) and [18, formula (2.90)], in this case we deduce(

Wλ,c [s,n, J]
)−1
= Uθ−1,c

[
sθ, sθJn, J−1

]
=

= Uθ,c
[
sθsign θ,−sθ

(
sign θ

)
Jn, J−1

]
=

= Uθ,c
[
−sign θ,

(
sign θ

)
Jn, J−1

]
=

= Uθ,c
[
−sign (c − λ), sign (c − λ)Jn, J−1

]
=

=Wλ,c

[
−sign (c − λ), sign (c − λ)Jn, J−1

]
(s = −1). (38)

Taking into account (37) and (38) in the both cases we obtain
(34). □

Using Lemma 1, we obtain the following corollary.

Corollary 4. For arbitrary c ∈ (0,∞), λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1), n ∈ B1 (H1) and a ∈ M (H) the following
equality is fulfilled:(

Wλ,c [s,n, J; a]
)−1 w =

=Wλ,c

[
s sign (c − λ), sign (c − λ)Jn, J−1

]
w − a

(w ∈ M (H)) .

Let B be any base changeable set such, that Bs(B) ⊆ H
and Tm(B) = (R,≤), where ≤ is the standard order in the field
of real numbers R. Denote:

UPT
∓
fin (H,B, c) := Ku

(
PT

∓
fin (H, c) ,B; H

)
, (39)

where the denotation Ku (·, ·; ·) is introduced in [11], [18,
page 166]. From [18, Assertion 2.17.5] it follows, that in the
case dim (H) = 3 universal kinematics UPT∓fin (H,B, c) may
be considered as tachyon extension of kinematics of classical
special relativity, which allows for reference frames moving
with arbitrary speed other than the speed of light.

According to [18, Property 3.23.1(1)], the set
Lk

(
UPT∓fin (H,B, c)

)
of all reference frames of univer-

sal kinematics UPT∓fin (H,B, c), defined by (39), can be
represented in the form:

Lk
(
UPT

∓
fin (H,B, c)

)
=

=
{
(U,U [B,Tm(B)]) | U ∈ PT∓fin (H, c)

}
=

=
{
(U,U [B]) | U ∈ PT∓fin (H, c)

}
. (40)

In accordance with [18, Corollary 2.19.5], subclass of opera-
tors

P+ (H, c) =

=

Wλ,c [s,n, J; a]

∣∣∣∣∣∣∣∣
λ ∈ [0, c), s = 1,
J ∈ U (H1) ,
n ∈ B1 (H1) , a ∈ M (H)

 ⊆
⊆ PT∓fin (H, c)

is group of operators over the space M (H). So, the iden-
tity operator IM(H)w = w (∀w ∈ M (H)) belongs to the class
PT

∓
fin (H, c). Hence, in accordance with (40), we may define

the following reference frame:

l0,B : =
(
IM(H), IM(H) [B]

)
=

=
(
IM(H),B

) ∈ Lk
(
UPT

∓
fin (H,B, c)

)
(41)

(recall, that, according to [18, Remark 1.11.3], IM(H) [B] =
B).

Lemma 2. For each reference frame l ∈
Lk

(
UPT∓fin (H,B, c)

)
the following correlation holds:

l0,B ⇑+UPT∓fin(H,B,c) l.

Proof. Consider any reference frame l ∈
Lk (UPT∓ (H,B, c)). According to (40) and (32), frame l can
be represented in the form:

l = (U,U [B]) , where (42)
U =Wλ,c

[
sign (c − λ),n, J; a

]
, (43)

0 ≤ λ < +∞, λ , c,

n ∈ B1 (H1) , J ∈ U (H1) , a ∈ M (H) .

Applying [18, Properties 3.23.1(3,4,7)] as well (42), (43),
(41) and Corollary 4 we obtain

Tm (l) = Tm
(
l0,B

)
= Tm(B) = (R,≤) ; (44)

Mk (l) = Mk
(
l0,B

)
= Tm(B) × H =

= R × H =M (H) ;[
l0,B← l

]
w = IM(H)U−1w =

=
(
Wλ,c

[
sign (c − λ), n, J; a

])−1 w =

=Wλ,c

[(
sign (c − λ))2 , sign (c − λ)Jn, J−1

]
w − a =

=Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w − a (45)

(w ∈ Mk (l) =M (H)) .

Now we consider any w1,w2 ∈ Mk (l) =M (H) such that
bs (w1) = bs (w2) and tm (w1) <l tm (w2). According to (44),
inequality tm (w1) <l tm (w2) is equivalent to the inequality
tm (w1) < tm (w2). From the equality bs (w1) = bs (w2) it
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follows that

X (w2 − w1) =
= X (tm (w2) − tm (w1) , bs (w2) − bs (w1)) =

= (0, bs (w2) − bs (w1)) = 0.

Thence, using (45) and (33) we deduce

tm
([
l0,B← l

]
w2

) − tm
([
l0,B← l

]
w1

)
=

= tm
([
l0,B← l

]
w2 −

[
l0,B← l

]
w1

)
=

= tm
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w2−

−Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w1

)
=

= tm
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
(w2 − w1)

)
=

= T
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
(w2 − w1)

)
=

=
T (w2 − w1) − λc2

⟨
sign (c − λ)Jn,w2 − w1

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1) − λc2

⟨
sign (c − λ)XJn,w2 − w1

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1) − λc2

⟨
sign (c − λ)Jn,X (w2 − w1)

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1)√∣∣∣1 − λ2

c2

∣∣∣ = T
(w2) − T (w1)√∣∣∣1 − λ2

c2

∣∣∣ > 0

Therefore, tm
([
l0,B← l

]
w1

)
< tm

([
l0,B← l

]
w2

)
, ie, accord-

ing to (44), we have, tm
([
l0,B← l

]
w1

)
<l0,B tm

([
l0,B← l

]
w2

)
.

Thus, for arbitrary w1,w2 ∈ Mk (l) = M (H) such, that
bs (w1) = bs (w2) and tm (w1) <l tm (w2) it is true the in-
equality tm

([
l0,B← l

]
w1

)
<l0,B tm

([
l0,B← l

]
w2

)
. And, tak-

ing into account Definition 9 (item 2), we have seen, that
l0,B ⇑+UPT∓fin(H,B,c) l. □

Corollary 5. Every universal kinematics of kind
UPT∓fin (H,B, c) (0 < c < ∞) is certainly time irreversible.

Proof. According to Lemma 2 and Definition 9 (item 5),
kinematics of kind UPT∓fin (H,B, c) (0 < c < ∞) is
weakly time-positive. Hence, by Theorem 2, kinematics
UPT∓fin (H,B, c) is certainly time irreversible. □

Remark 4. Kinematics of kind UPT∓fin (H,B, c) (0 < c < ∞)
is weakly time-positive, but it is not time-positive. Similarly
to Lemma 2 it can be proved, that for any (superluminal) ref-
erence frame of kind:

l = (U,U [B]) ∈ Lk
(
UPT

∓
fin (H,B, c)

)
, where

U =Wλ,c
[
sign (c − λ),n, J; a

]
=Wλ,c [−1,n, J; a] ,

c < λ < +∞, n ∈ B1 (H1) , J ∈ U (H1) , a ∈ M (H)

the correlation l ⇓−
UPT∓fin(H,B,c) l0,B is true despite the fact that

l0,B ⇑+UPT∓fin(H,B,c) l (according to Lemma 2).

Remark 5. It is easy to see that the binary relation ⇑+F is re-
flexive on the set Lk (F ) of all reference frames of arbitrary
universal kinematics F . From Remark 4 it follows that in
the general case this relation is not symmetric. Using the re-
sults of [10, Section 7, paragraph 4] it can be proven that this
relation is not transitive in the general case.

8 On the physical interpretation of main result

The aim of this section is to explain main Theorem 2 in the
physical language. We can imagine, that any universal kine-
matics F is some abstract “world”, which not necessarily co-
incides with the our. In every such “world” F there exists
the fixed for this “world” set of reference frames Lk (F ). We
reach the agreement that for any reference frame l ∈ Lk (F )
the arrows of the clock, fixed in the frame l are rotating clock-
wise relatively the frame l. We say, that the reference frame
m ∈ Lk (F ) is time-positive relatively the reference frame
l ∈ Lk (F ) (ie m ⇑+F l) if and only if the observer in the ref-
erence frame m (fixed relatively m) observes that the arrows
of the clock, fixed in the frame l are rotating clockwise in the
frame m as well (cf. Definition 9, item 2). We abandon the
physical question, how can the observer in m “see” the clock,
fixed in the other frame l. From the mathematical point of
view, the possibility of observation the clock, attached to an-
other reference frame, is guaranteed by existence of univer-
sal coordinate transform between every two reference frames
(see definition of universal kinematics in [11,18]). According
to Remark 5, the binary relation ⇑+F always is reflexive, but,
in the general case, it is not symmetric and is not transitive on
the set Lk (F ) of all reference frames of the “world” F .

We also suppose, that in the “world” F the interframe
voyagers can exist. Such voyagers may move from one refer-
ence frame to the another frame, passing near them (similarly
as, standing near the tram track, we can jump into the tram,
passing near us).

From the physical point of view Theorem 2 asserts, that
if in the “world” F there exists at least one reference frame
l0 ∈ Lk (F ), which is time-positive relatively the every frame
l ∈ Lk (F ), then in this “world” the temporal paradoxes,
connected with the possibility of the returning to the own
past are impossible. This means, that any interframe voy-
ager, starting in some reference frame l in some fixed point x
can not finish its travel in the frame l and in the point x at the
past time.

9 Conclusions

1. According to Corollary 5, kinematics of kind
UPT∓fin (H,B, c) (in the case dim (H) = 3) gives the
example of certainly time-irreversible tachyon exten-
sion of kinematics of classical special relativity, which
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allows for reference frames moving with arbitrary ve-
locity other than the velocity of light. Thus, the main
conclusion of Theorem 2 is the following:
In the general case the hypothesis of existence of mate-
rial objects and inertial reference frames, moving with
the velocity, greater than the velocity of light, does not
lead to temporal paradoxes, connected with existence
of formal possibility of returning to the own past.

2. In [9] authors have deduced two variants of generalized
superluminal Lorentz transforms for the case, when
two inertial frames are moving along the common x-
axis:

t′ =
t − vxc2√(
v
c

)2 − 1
, x′ =

x − vt√(
v
c

)2 − 1
,
y′ = y,

z′ = z,
(46)

where v ∈ R, |v| > c (see [9, formula (3.16)]) and:

t′ =
−t + vxc2√(
v
c

)2 − 1
, x′ =

−x + vt√(
v
c

)2 − 1
,
y′ = y,

z′ = z
(47)

(see [9, formula (3.18)]). Transforms (46) are partic-
ular cases of the transforms of kind (33) for the case,
where dim (H) = 3, λ > c and s = 1, whereas trans-
forms (47) belong to the transforms of kind (33) for
the case, where dim (H) = 3, λ > c and s = −1.
If we chose in (33) the value s = 1 for subluminal
as well as superluminal diapason, we obtain the class
of operators PT+ (H, c), defined in [13, 18] and based
on this class of operators universal kinematics of kind
UPT (H,B, c). According to results, announced in [19]
and published in [12], this kinematics is conditionally
time reversible 1. But, if we chose in (33) the value
s = 1 for subluminal diapason and value s = −1 for
superluminal diapason, we reach the class of operators
PT

∓
fin (H, c), defined in (32) and based on this class of

operators universal kinematics of kind UPT∓fin (H,B, c).
According to Corollary 5, kinematics UPT∓fin (H,B, c)
is certainly time irreversible. Thus we can formulate
the following conclusion, concerning two variants of
superluminal Lorentz transforms, deduced in [9]:
From the standpoint of time-irreversibility, transforms
(47) or [9, formula (3.18)] are more suitable for repre-
sentation of the tachyon continuation of Einstein’s spe-
cial theory of relativity than (46) or [9, formula (3.16)].

Main results of this paper had been announced in [19].

Received on September 19, 2017
1 In fact, class of operators PT+ (H, c) contains apart from operators of

kind (33) (with s = 1) also operators, corresponding tachyon inertial refer-
ence frames with infinite velocities. However, using results of the paper [12],
it is not hard to deduce that the “subkinematics” of kinematics UPT (H,B, c),
which includes only all reference frames from UPT (H,B, c) with finite ve-
locities, also is conditionally time reversible.
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In this paper we introduce chain systems of harmonic quantum oscillators as a fractal
model of matter and apply it to the analysis of frequency ranges of cyclical biological
processes. The heuristic significance of global scaling in biophysics and medicine is
discussed.

Introduction

Normal matter is formed by nucleons and electrons because
they are exceptionally stable. Their lifespan tops everything
that is measurable, exceeding 1029 years for the proton and
1028 years for the electron [1]. The proton-to-electron mass
ratio is approximately 1836, so that the mass contribution
of the proton to normal matter is very high, for example in
the hydrogen atom (protium) it is 1− 1/1836≈ 99.95 percent.
Consequently, the mass contribution of the electron is only
0.05 percent. In heavier atoms which contain neutrons, the
electron contribution to atomic mass is even smaller.

In addition, protons and neutrons have similar rest masses
(the difference being only 0.14 percent) which allows us to
interpret the proton and the neutron as similar quantum oscil-
lators with regard to their rest masses. the framework of the
standard particle model [2], protons and neutrons are baryons,
with the proton connecting to a lower quantum energy level
and a much more stable state than the neutron.

Therefore, in [3] we have introduced a fractal model of
matter as a chain system of oscillating protons. In [4] we have
shown that scale invariance is a fundamental property of this
model. As a consequence of this scale invariance, chain sys-
tems of oscillating electrons produce similar series of eigen-
states so that the proton model mass can be derived from the
electron rest mass and vice versa. Furthermore, the interpre-
tation of the Planck mass as an eigenstate in a chain system
of oscillating protons has allowed us to derive the proton rest
mass from fundamental physical constants [5].

Scale-invariant models of natural oscillations in chain
systems of protons also provide a good description of the
mass distribution of large celestial bodies in the Solar Sys-
tem [6]. Physical properties of celestial bodies such as mass,
size, rotation and orbital period can be understood as macro-
scopic quantized eigenstates in chain systems of oscillating
protons and electrons [7]. This understanding can be applied
to an evolutionary trend prognosis of the Solar System but
may be of cosmological significance as well. In [8] we have
calculated the model masses of unknown planets in the Solar
System.

In this paper we apply our fractal model of matter as a
chain system of oscillating protons and our hypothesis of glo-

bal scaling [7] to the domain of biophysics, especially to the
analysis of frequency ranges of cyclical biological processes.

Methods

In [4] we have shown that the set of natural frequencies of a
chain system of harmonic oscillators coincides with a set of
finite continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z is equal 1.

Any finite continued fraction represents a rational num-
ber [9]. Therefore, all frequencies ω jk in (1) are irrational,
because for rational exponents the natural exponential func-
tion is transcendental [10]. This circumstance presumably
provides for the high stability of the oscillating chain system
because it avoids resonance interaction between the elements
of the system [11].

In the case of harmonic quantum oscillators, the contin-
ued fraction (1) defines not only a fractal set of natural angu-
lar frequencies ω jk and oscillation periods τ jk = 1/ω jk of the
chain system, but also fractal sets of natural energies
E jk = ℏ ·ω jk and masses m jk = E jk/c2 which correspond with
the eigenstates of the system. For this reason, we have called
the continued fraction (1) the “fundamental fractal” of eigen-
states in chain systems of harmonic quantum oscillators [4].

We hypothesize the scale invariance based on the funda-
mental fractal F (1) , calibrated by the properties of the pro-
ton and electron, is a universal characteristic of matter. This
hypothesis we have called ‘global scaling’ [7].

In order to test global scaling on frequencies of cycli-
cal biological processes we must calculate the natural log-
arithm of the process-to-proton frequency ratio. The pro-
ton angular frequency is ωp =mpc2/ℏ= 1.425486 · 1024 Hz,
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Table 1: Frequency ranges of some cyclical biological processes and the corresponding attractor nodes of the fundamental fractal F (1),
with the proton frequency ωp = 1.425486 · 1024 Hz as fundamental.

cyclic process of human physiology frequency range ω, Hz ln (ω /ω p) F
adult relaxed breathing [13] 0.22..0.27 −57.13.. − 56.94 [−57;∞]
adult relaxed heart rate [14] 0.83..1.5 −55.80.. − 55.21 [−55;−2]
brain activity delta 0.15..3 −57.52.. − 54.52 [−57;−2]..[−54;−2]
brain activity theta [12] 3..8 −54.52.. − 53.53 [−54;−2]..[−54; 2]
brain activity alpha 8..13 −53.53.. − 53.06 [−53;−2]..[−53;∞]
brain activity beta 14..34 −52.97.. − 52.06 [−53;∞]..[−52;∞]
brain activity gamma 35..250 −52.05.. − 50.10 [−52;∞]..[−50;∞]
muscle vibration [15] 22..24 −52.53.. − 52.44 [−52;−2]
flicker fusion threshold [16] 60..120 −51.52.. − 50.83 [−51;−2]..[−51;∞]
newborn baby cry [17] 400..500 −49.62.. − 49.41 [−49;−2]
threshold of hearing [18, 19] 1900..2100 −40.55.. − 40.45 [−40;−2]

Fig. 1: Distribution (logarithmic representation) of frequency ranges (positive numbers) of human brain wave activity and other cyclical bi-
ological processes in the canonical projection of the fundamental fractal F (1) with the proton angular frequency ωp = 1.42548624 · 1024 Hz
as fundamental. Negative numbers are logarithms and denote attractor nodes. Data taken from table 1.

where mp = 1.672621 · 10−27 kg [1] is the proton rest mass, ℏ
is the Planck constant, c is the speed of light in vacuum. In
the canonical form (z= 1), nodes of the fundamental fractal
F (1) concur with integer and half logarithms.

For example, the frequency range of the theta electrical
brain activity (theta waves, oscillatory pattern in electroen-
cephalographic signals) is between 3 and 8 Hz [12] and the
natural logarithm of the theta-to-proton frequency ratio is be-
tween [−54;−2] and [−54; 2] approximating the main node
[54;∞] of the proton calibrated fundamental fractal F (1):

ln
(
ωmax theta

ωproton

)
= ln

(
8 Hz

1.425486 · 1024 Hz

)
= −53.53,

ln
(
ωmin theta

ωproton

)
= ln

(
3 Hz

1.425486 · 1024 Hz

)
= −54.52.

Results

Table 1 shows the logarithms of frequency ranges of some
cyclical biological processes and the corresponding attractor
nodes (integer and half logarithms) of the fundamental fractal
F (1).

Figure 1 shows the distribution (in logarithmic represen-
tation) of frequency ranges of brain wave activity and

other cyclical processes of human physiology in the funda-
mental fractal F (1) with the proton angular frequency
ωp = 1.42548624 · 1024 Hz as fundamental. Negative num-
bers are logarithms and denote attractor nodes. Positive num-
bers are frequencies, given in cycles per minute within the
delta-range, and given in Hz within the theta, alpha, beta and
gamma ranges.

Although the analyzed processes are of very high com-
plexity, figure 1 shows that the frequency ranges of electrical
brain activity (oscillatory patterns in electroencephalographic
signals) and of other cyclical biological processes correspond
with attractor nodes of the fundamental fractal F (1). This
fact supports our hypothesis of global scaling.

Conclusion

Frequency ranges of electrical brain activity and of some
other cyclical biological processes coincide well with the pro-
ton calibrated fundamental fractal F (1) which would indi-
cate that these cycles may have a subatomic origin. It should
also be considered that the frequency ranges of electrical
brain activity are common to most mammalian species [20,
21].

The accordance of the brain wave frequency ranges with
the proton calibrated fundamental fractal F (1) not only sup-
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ports our hypothesis of global scaling, but also suggests an
understanding of the biological organism as an oscillating
chain system. This view could be of medical significance as
well.

Scale invariance as a property of biological processes is
well studied [22, 23] and it is not an exclusive characteristic
of adult physiology. For example, the heart rate and the res-
piratory cycle of the fetus are related in the same way as in
the adult [24]. Perhaps even the Weber-Fechner law – “in-
tensity of sensation is proportional to the logarithm of stim-
ulation” [25] – can be understood as a consequence of scale
invariance in chain systems of cyclical biological processes.

Furthermore, global scaling suggests that the electrical
brain activity continues beyond the known gamma range, be-
cause higher frequency processes like voice and hearing have
to be brain-controlled as well. It is likely that traditional
methods of electroencephalographic signal analysis are un-
able to separate high frequency patterns because of their very
low amplitude. However, global scaling allows us to calcu-
late the frequency ranges of such ultra-gamma activity (for
which we propose the name “epsilon”). The frequency ranges
of this very dynamic “epsilon” activity should be between
ωp exp(−50)= 275 Hz and ωp exp(−49)= 747 Hz.
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LETTERS TO PROGRESS IN PHYSICS

A Comment on “Can the One-way Speed of Light be Used for Detection
of Violations of the Relativity Principle?”

Joseph Catania
E-mail: jcatania1@verizon.net

I show in this Letter that Spavieri et. al.’s clock transport delay calculations are incor-
rectly determined because of a sign error. Thus, the results of Roland De Witte (1991)
should be considered significant.

1 Details

Assume for simplicity that what Spavieri et. al. [1] mean by
u(t) is, a velocity of constant magnitude u, with a varying
direction, yielding a total effective absolute velocity V ≃ v +
u(t). Spavieri et. al.’s Equation (5) is reproduced here for
convenience,

δτ ≃ dt
γV
− dt
γv
≃ (v2 − V2) dt

2c2 = −v · u(t) dt
c2 . (S5)

Notice that Equation (6),

∆τ = − 1
c2

∫ B

A
v · u(t) dt = − L

c2 v (cos θA − cos θB) (S6)

is supposedly the integral of (5). Referring to Fig. 1 in [1] the
projection of u(t) on v is −u · cos (π/2 − θ) = −u · sin θ and
| u(t) |= Lω = L · dθ

dt giving,

∆τ = − 1
c2

∫ B

A
v · u(t) dt = − L

c2 v

∫ B

A
− sin θ · dθ

dt
dt =

= − L
c2 v (cos θB − cos θA). (C1)

Thus, Spavieri et. al. does not correctly calculate ∆τ, a
quantity which they call clock transport delay (CTD). A sim-
ple sign check on δτ in (S5) and ∆τ in (S6) shows they aren’t
the same. | V | < | v | thus (S5) is positive, whereas since
−[cos 0 − cos (0 − dθ)] is negtive, (S6) is negative. Replacing
(C1) with (S6), the signs now agree.

2 Comments

The De Witte effect is given by,

tOB − tOA =
L
c2 v (cos θB − cos θA) (C2)

and shows a decreasing effect as θ increases or decreases from
its alignment with v (which we take as θ = 0). Eqs. (C1) and
(S5) show an increasing effect, whereas (S6), which is ev-
identally a harmonized version of (S5), shows a decreasing
effect. So (S6), which supports Spavieri et. al.’s thesis, that
the De Witte Effect is merely due to slow clock transport, is

incorrect due to a sign error. The result is that if Spavieri et.
al. is to be taken seriously the effect measured by De Witte
will be due to twice what is derived in [1, 2, 4], which deriva-
tions do not ignore Fresnel drag. For instance Spavieri et. al’s
Equation (4) would be modified to,

t̄OA − t̄OB = ∆τ +
L
c2 v (cos θA − cos θB) =

=
2L
c2 v (cos θA − cos θB). (C3)

It must be noted at this point that Spavieri et. al. cites [5]
(ref. 16 at the end of §3 in [1]) in which they claim that CTD is
equivalent to Einstein Synchronization (ES). Unfortunately,
the derivation in [5] §2 is riddled with error. For example
Eq. (2) should be t = h

w
instead of t = h

∆w
and Eq. (6) should

be t1 =
γh
c−v instead of t1 = h

c−v . Thus, CTD and ES agree
in [5] up to second order only after a harmonization.

3 Comments on synchronization

The discussion in [1] on clock transport time delay would
seem to be completely spurious. An Einstein clock synchro-
nization (ES) performed from O to A will guarantee synchro-
nization throughout rotation about O. Such a vacuum syn-
chronization will give the same result no matter whether the
clock is at A, B or any other point as long as the labora-
tory frame path length is the same. This is guaranteed by
the constant propagation velocity of light in the ether and the
Lorentz transformation (LT), as shown by Maxwell’s luminif-
erous ether theory and confirmed by two-way speed of light
measurements in vacuo. Thus, Einstein’s ’On the Electro-
dynamics of Moving Bodies’ is based on ether theoretical
dogma, as any treatment needs to be in order to be predic-
tive.

Consider the case where the lab frame is moving at ve-
locity v wrt the ether and the dielectric rod in this frame is
rotating at constant velocity u. By ES any clock at rest wrt
O can be synchronized to O and all such clocks at distance
L wrt O have the same synchronization. Any clock at ve-
locity u and distance L wrt O has the same synchronization
wrt O. Therefore, if A is synchronized with O it will remain
synchronized.
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According to [1] the CTD, due to time dilation as clock A
moves slowly due to Earth’s rotation, can be calculated from
[1] using,

1
γ0
− 1
γ0
= 0. (C6)

since in the frame of the rotating clocks they have no relative
velocity wrt each other. They do have relative velocity wrt
each other in the ether frame but that leads to (C1) and (C3)
instead of (S6). Since no measurements are made from the
ether frame but are made from the frame of the atomic clocks
we must refer synchronization to this frame, as LT teaches
that the two synchronizations aren’t the same. LT also guar-
antees that the time dilation effects of CTD are the same for
the signal propagation time on De Witte’s cable as they are
for the measuring clocks, negating relative effect between the
two.

Alternatively, since the CTD of A wrt to O equals, by
symmetry the CTD of O wrt A, they must cancel. This is an
example of The Clock Paradox and ensures that no dissyn-
chronization will occur between O and A, as opposed to what
is taught in [1].

One might also ask, How do we ascribe CTD as the cause
of De Witte’s effect in the vacuum case when there is no
De Witte Effect in the vacuum? Too, in De Witte’s Exper-
iment [3] when the North-South signal and the South-North
signal are subtracted any biases or dissynchronizations would
cancel. Additionally, if De Witte’s results could be ascribed
to clock transport delay it would still obtain that a measure-
ment of velocity wrt the ether had been made in contradiction
to SR canon.

4 Closing comments

Using the sidereal rotation period of Earth,

ω ≃ 2π
86164.1

s−1 ≃ 7.3 · 10−5 s−1 (C4)

and,

dt =
L
c
= 5 · 10−6 s; u(t) = Lω ≃ 0.11 m/s (C5)

from (C2) and [3] the absolute motion velocity is,

v =

(
14 · 10−9

) (
9 · 1016

) (
cos 0 − cos π2

)
1500

= 8.4 · 105 m/s.

[As an aside, this absolute motion velocity of 840 km/s is
larger than those stated in [3] for the De Witte Experiment,
larger than Earth’s velocity wrt the Cosmic Microwave Back-
ground and larger than most author’s estimates. Also, since
the declinations of De Witte’s cable and the absolute motion
vector of Earth wrt vacuum are estimated to be as much as
about 25◦ apart we should expect a velocity from 840-930
km/s. Note that this result is stated with some reservation
(see below).]

Some have expressed the belief [1, 4] that Fresnel drag
may not be acting in certain cases where a refractive mate-
rial is known to be present. Fresnel drag is a dogmatic phe-
nomenon equivalent to the LT with excellent experimental
confirmation. It shouldn’t be possible to turn physics on or off
like a light switch, it is always present with refractive materi-
als but the effect is not always correctly anticipated formally.
In fact according to detailed calculations by the author, De
Witte cannot be explained by a predictive ether-based formal-
ism (Michelson-Lorentz formalism) with a final transforma-
tion to the lab frame. Such calculations, be they for one-way,
two-way, with or without refractive media, always return re-
sults which speak of no unusual effects. Thus the Roland De
Witte Effect remains a mystery.

Submitted on October 4, 2017

References
1. Spavieri G., et. al. Can the one-way speed of light be used for detection

of violations of the relativity principle? Phys. Lett. A, 2012, v.376,
795–797.

2. Cahill R. T., Brotherton D. Experimental investigation of the Fresnel
drag effect in RF coaxial cables. Prog. Phys., 2011, v.7, issue 1, 43.

3. Cahill R. T. The Roland De Witte 1991 Experiment. Prog. Phys., 2006,
v.2, issue 3, 60–65.

4. Cahill R. T. One-way speed of light measurements without clock syn-
chronisation. Prog. Phys., 2012, v.8, issue 3, 43–45.

5. Cavalleri G., Spinelli G. Problems of synchronization in Special Rela-
tivity and possible links with stochastic electrodynamics. Found. Phys.,
1983, v.13, 1221.

J. Catania. Comment on Spavieri et. al. 235



Progress in Physics is an American scientific journal on advanced studies in physics, 
registered with the Library of Congress (DC, USA): ISSN 1555-5534 (print version) 
and ISSN 1555-5615 (online version). The journal is peer reviewed and listed in the 
abstracting and indexing coverage of: Mathematical Reviews of the AMS (USA), 
DOAJ of Lund University (Sweden), Scientific Commons of the University of 
St.Gallen (Switzerland), Open-J-Gate (India), Referential Journal of VINITI 
(Russia), etc. Progress in Physics is an open-access journal published and distribut-
ed in accordance with the Budapest Open Initiative: this means that the electronic 
copies of both full-size version of the journal and the individual papers published 
therein will always be acessed for reading, download, and copying for any user free 
of charge. The journal is issued quarterly (four volumes per year).

Electronic version of this journal: http://www.ptep-online.com

Postal address: 
Department of Mathematics and Science, University of New Mexico,
705 Gurley Avenue, Gallup, NM 87301, USA

Advisory Board of Founders:
Dmitri Rabounski, Editor-in-Chief
Florentin Smarandache, Assoc. Editor
Larissa Borissova, Assoc. Editor
   

Editorial Board:
Pierre Millette
Andreas Ries
Gunn Quznetsov
Felix Scholkmann
Ebenezer Chifu   


