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Fundamental Geometrodynamic Justification of Gravitomagnetism (I)

G. G. Nyambuya

National University of Science and Technology, Faculty of Applied Sciences – Department of Applied Physics,
Fundamental Theoretical and Astrophysics Group, P. O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe.

E-mail: physicist.ggn@gmail.com

At a most fundamental level, gravitomagnetism is generally assumed to emerge from
the General Theory of Relativity (GTR) as a first order approximation and not as an
exact physical phenomenon. This is despite the fact that one can justify its existence
from the Law of Conservation of Mass-Energy-Momentum in much the same manner
one can justify Maxwell’s Theory of Electrodynamics. The major reason for this is that
in the widely accepted GTR, Einstein cast gravitation as a geometric phenomenon to be
understood from the vantage point of the dynamics of the metric of spacetime. In the
literature, nowhere has it been demonstrated that one can harness the Maxwell Equa-
tions applicable to the case of gravitation – i.e. equations that describe the gravitational
phenomenon as having a magnetic-like component just as happens in Maxwellian Elec-
trodynamics. Herein, we show that – under certain acceptable conditions where Weyl’s
conformal scalar [1] is assumed to be a new kind of pseudo-scalar and the metric of
spacetime is decomposed as gµν = AµAν so that it is a direct product of the components
of a four-vector Aµ – gravitomagnetism can be given an exact description from within
Weyl’s beautiful but supposedly failed geometry.

My work always tried to unite the Truth with the Beautiful,

but when I had to choose one or the other, I usually chose the

Beautiful.

Herman Klaus Hugo Weyl (1885-1955)

1 Introduction

Exactly 102 years ago, the great, brilliant and esoteric Ger-
man mathematician cum mathematical physicist and philoso-
pher – Herman Klaus Hugo Weyl (1885-1955) – astounded
the world of Physics with the first ever unified field theory
of gravitation and electromagnetism. At the time, gravitation
and electromagnetism were the only known forces of Nature,
hence, from the viewpoint of the collective wisdom of the day,
Weyl’s [1] theory was seen as a unified field theory of all the
forces of Nature. Since Weyl’s [1] maiden efforts, unification
of the gravitational phenomenon with the other forces of Na-
ture has remained as one of the greatest – if not the greatest
– and most outstanding problem in all of physics today. This
endeavour of unification of all the forces of Nature first con-
ducted by Weyl [1], became Albert Einstein’s (1879-1955)
final quest in the last 30 years of his brilliant and eventful
life.

Since it is a widely accepted position, it perhaps is only
fair for us to say at this very point, that – overall – while
he failed in his titanic 30-year long quest and battle with the
problem of an all-encompassing unified field theory of all the
forces of Nature, Einstein made serious meaningful contribu-
tions to this seemingly elusive grand dream of a Final Theory
that ties together all the known forces of Nature – the Grav-
itational force, the Electromagnetic force, the Weak and the
Strong force – into one, giant, neat, beautiful, coherent and

consistent mathematical framework that has a direct corre-
spondence with physical and natural reality as we know it.

Despite his legendary lifelong failure to attain a unified
field theory, Einstein [2, 3] understood very well the need for
tensorial affine connections in the construction of a unified
field theory. Einstein [2, 3] was not alone in this esoteric pot
of wisdom; amongst others, towering figures of history such
as Eddington [4] and Schrödinger [5–7] all but made similar
noteworthy attempts to attain a unified field theory that made
use of tensorial affines.

In the present work, this idea of tensorial affine connec-
tions is a fundamental lynchpin in the construction of what
we believe is a noteworthy stepping stone to a Final Unified
Field Theory (FUFT) of the gravitational phenomenon and
the other forces of Nature. When we here say Final Uni-
fied Field Theory, we mean this in the context of the path
(see [8–10]) that we are pursuing in order to arrive at what
we believe is the FUFT.

In order for us to give the reader the correct scope of the
present work, we must hasten and say that the present work
is part and parcel of our upcoming monograph on this grand
dream of Einstein. What we present herein is but a portion
thereof. We herein demonstrate that gravitomagnetism has a
fundamental geometric justification well within the scheme
of Weyl’s [1] supposed failure. We strongly believe – or
are of the innate view – that the much sought for path to a
successful Quantum Geometrodynamic (QGD) theory will be
achieved very soon via a recasting of the gravitational phe-
nomenon into a Maxwell-type formalism where the quanti-
zation of the gravitational field will prove to be the trivial
exercise of quantizing a four-vector field Aµ associated with
the gravitational field. Through the well known quantization
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procedures discovered in the quantization of the electromag-
netic four-vector field in Quantum Electrodynamics (QED),
the gravitational four-vector field can be quantized too in this
very same manner.

We must say that our theory is directly inspired by Weyl’s
geometry [1] – a geometry that for the first time made the
great and esoteric stride and endeavour to bring the electro-
magnetic and gravitational forces together into a fruitful and
harmonious union that did not last beyond Einstein’s first crit-
icism of it (see e.g. [11]). Unlike what we have done in our
previous work (in [8–10]), we shall not anymore bother our
reader with the plethora of the exciting and fascinating his-
toric anecdotes associated with the pursuit of a unified field
theory that brings the gravitational and quantum phenomenon
into one giant, neat, coherent and consistent mathematical
framework. We deal here directly with the purest portions
and jewels of our effort.

In their noble quest and search for a unified field theory
of the quantum and gravitational phenomenon, physicists –
and mathematicians alike – have been motivated by various
reasons. In our case, our motivation has been, and is solemnly
to overcome the obvious great difficulty associated with the
General Theory of Relativity (GTR)’s geodesic equation of
motion, namely:

d2xλ

ds2 − Γλαδ
dxα

ds
dxδ

ds
= 0 (1)

where ds = cdτ is the line element, τ is the relativistic proper
time, c = 2.99792458 × 108 m s−1 (CODATA 2018) is the
speed of light in vacuo, xµ is the four-position of the particle
in spacetime, and Γλµν are the usual Christoffel three-symbols
[12]∗. Because of the non-tensorial nature of the affine con-
nection Γλµν, this geodesic (1) of motion does not hold fast –
in the truest sense – to the depth of the letter and essence of
the philosophy deeply espoused and embodied in Einstein’s
Principle of Relativity (PoE) [13], namely that physical laws
must require no special set of coordinates where they are to
be formulated.

The non-tensorial nature of the affine connection requires
that the equation of motion must first be formulated in spe-
cial kind of coordinate systems known as a geodesic coor-
dinate system†, yet the PoE forbids this. This problem has
never been adequately addressed in the GTR. As Einstein [2]
noted, a permanent way out of this dilemma is to find a ge-
ometry whose affine connections are tensors. This is what
we do herein. At the end of our quest – for the gravitational

∗These symbols are named after German mathematician and physicist
Elwin Bruno Christoffel (1829-1900). Christoffel first introduced these sym-
bols in a paper on differential forms in n variables, published in Crelle’s
Journal: see [12].

†A geodesic coordinate system is one in which the Christoffel three-
symbols Γλµν vanish at all points on the given set of coordinates – i.e. Γλµν = 0.
An example is the flat rectangular (x, y, z) system of coordinates. However,
when one moves from this (x, y, z) rectungular system of coordinates to say
the spherical (r, θ, ϕ), the resulting affine Γλ

′

µ′ν′
is not zero – i.e. Γλ

′

µ′ν′
, 0.

phenomenon as a whole – we arrive not by design, but rather
by serendipity, at a gravitomagnetic theory similar to that of
Maxwell [14].

In current efforts being made on both the theoretical (in
e.g. [15–19]), and observational front (in e.g. [20–24]), grav-
itatomagnetism is predominately understood in the context of
Einstein’s [25–28] linearised first order approximation of the
GTR. Our approach is different to this predominant approach.

We herein consider gravitomagnetism as an exact theory
independent of the GTR in much the same way it was con-
ceived by Maxwell [14] and Heaviside [29, 30] and further
championed (in modern times) e.g. by Jefimenko [31] and Be-
hera [32] amongst others. The present gravitomagnetic the-
ory falls within the realm of a more ambitious attempt that we
are currently working on, i.e. an attempt at an all-encompass-
ing Unified Field Theory (UFT) of all the forces of Nature
(see [10, 33]). We shall say nothing about this attempt but
direct the interested reader to these works.

In closing this introductory section, we shall give a brief
synopsis of the remainder of the paper. In §2, we give a brief
exposition of the GTR. In §4, we give an exposition of Weyl’s
theory [1]. In §3, we give a non-geometric justification of
gravitomagnetism. In §5, we present our theory. Thereafter,
in §6, in preparation for the presentation of the gravitomag-
netic field equations, we express the new affine (Γλµν) and the
Riemann tensor (Rµν) in terms of the gravitational Maxwell-
type field tensor (Fµν). Therein §6, we also work out the
geometrically derived material tensor (Tµν) so that its terms
correspond with what we know from the physical world. In
§7, we write down the resultant field equations. Lastly, in §8,
a general discussion is given.

2 Brief exposition of the GTR

As is well known, Einstein’s Special Theory of Relativity [34]
deals with inertial observers while the GTR deals with non-
inertial observers. The problem with non-inertial observers is
that gravitation becomes a problem since it is an all pervad-
ing non-vanishing force. By analysing the motion of a test
body in free fall motion in a gravitational field, Einstein [13]
was able to overcome this problem of gravitation by noting
that if the gravitational (mg) and inertia mass (mi) were equal
or equivalent, then gravitation and acceleration are equivalent
too. This meant that the effect(s) of acceleration and grav-
itation are the same. One can introduce or get rid of the
gravitational field by introducing acceleration into the sys-
tem. Because of the importance of this, it came to be known
as the Principle of Equivalence, and Einstein [25] took this
as a foundational pillar to be used for the construction of his
GTR.

2.1 Principle of Equivalence

The deep rooted meaning of the Principle of Equivalence is
that physical laws should remain the same in a local reference
system in the presence of a gravitational field as they do in
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an inertial reference system in the absence of gravitation. In
Einstein’s own words [13]:

Einstein’s Principle of Equivalence (PoE): We shall
therefore assume the complete physical equivalence of
a gravitational field and the corresponding accelera-
tion of the reference system. This assumption extends
the Principle of Relativity to the case of uniformly ac-
celerated motion of the reference system.

A consequence of this is that no mechanical or optical ex-
periment can locally distinguish between a uniform gravita-
tional field and uniform acceleration. It is here that we would
like to point out that the PoE as used in the formulation of
the GTR does not demand that the physics must remain in-
variant. By “the physics” we mean that the description of a
physical event ought to remain invariant unlike, for example,
in black hole physics – where, depending on the coordinate
system employed (and not the reference system – this is im-
portant), a particle can be seen to pass or not pass through the
Schwarzschild sphere for the same observer supposedly un-
der the same conditions of experience. Also the chronological
ordering of events is violated – i.e. the Law of Causality is not
upheld.

For example, as first pointed out by the great mathemati-
cian, logician and philosopher Kant Gödel [35], in a rotat-
ing Universe, it is possible to travel back in time, invariably
meaning to say it is possible in principle to violate the Sec-
ond Law of Thermodynamics. Though the idea of time travel
is very fascinating and appealing to the mind, it is difficult
to visualize by means of binary logical reasoning how it can
work in the physical world as we know it. From intuition,
the laws of Nature must somehow have deeply engraved and
embedded in them the non-permissibility of time travel. We
believe that such illogical outcomes emerging out from a le-
gitimate application of the laws of Nature can be solved if the
geometry of the Universe is built on tensorial affinities.

2.2 Generalized Principle of Equivalence

Therefore, in order to avoid physical absurdities emerging
from supposedly well-founded laws of Nature, we must de-
mand of our theories that “the physics” emerging from the
theory, that is to say, the physical state and the chronologi-
cal ordering of events, must remain invariant – i.e. we must
extend the Principle of Equivalence to include the physical
state or physical description of events and as well the Law of
Causality. Because this must be universal and important, let
us call the extended Principle of Equivalence, the Generalized
Principle of Relativity:

Generalized Principle of Relativity (GPR): Physi-
cal laws have the same form in all equivalent reference
systems independently of the coordinate system used
to express them and the complete physical state or
physical description of an event emerging from these

laws in the respective reference systems must remain
absolutely and independently unaltered – i.e. invariant
and congruent – by the transition to a new coordinate
system.

This forms the basic guiding principle of the present theory.
The deeper meaning of the GPR is that, if one is describ-
ing the same physical event in spacetime e.g. a black hole, it
should not be permissible to transform away a singularity by
employing a different set of coordinates as is common place
in the study of the Schwarzchild metric. If the singularity
exists, it exists independently of the coordinate system and
reference system used – it is intrinsic and permanent, it must
exist at all levels of the theory.

Therefore, if we are to have no singularities, the theory
itself must be free of these. If a particle is seen not to pass
through the event horizon, it will not be seen to pass through
the boundary of the event horizon no matter the coordinate
system employed and the reference system to which the cur-
rent situation is transformed into. In order for this, there is
need for the affine connections to be tensors and this is what
we shall try to achieve in the present – i.e. a geometry en-
dowed with tensorial affine connections. For completeness,
self-containment and latter instructive purposes, in the next
subsection, we will take a look at the non-tensor affine con-
nections of Riemann geometry.

2.3 Affine connection

Now, back to the main vein: the Principle of Equivalence is,
in the context of Riemann geometry, mathematically embod-
ied in the equation:

gµν;α = gµν,α − Γδαµgδν − Γδανgµδ = 0 (2)

where gµν is the metric tensor describing the geometry of
spacetime and Γλµν is the affine connection. This affine con-
nection is obtained as follows (e.g. [36, pp. 59–60]): first we
write down two equations obtained by way of right-cyclically
permuting the µνσ-indices in (2) for the term gµν,σ, i.e.:

gµν;α = gµν,α − Γδαµgδν − Γδανgµδ = 0 , (3)

gµν;α = gµν,α − Γδαµgδν − Γδανgµδ = 0 . (4)

Second, we now subtract from (2) the sum of (3) and (4), and
use the symmetry of the connection (Γλµν = Γλνµ) and as well
of the metric (gµν = gνµ) to obtain:

(
gµν,α − gαµ,ν − gνα,µ

)
+

2gαδΓδµν = 0, hence:

Γλµν =
1
2

gδλ
(
gδµ,ν + gνδ,µ − gµν,δ

)
. (5)

The affine connections play an important role in that they re-
late tensors between different reference systems and coordi-
nate systems. Its drawback insofar as physical laws are con-
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cerned is that it is not a tensor. It transforms as follows:

Γλ
′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Γδµν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′︸          ︷︷          ︸
extra term

. (6)

The extra term on the right makes it a non-tensor and without
it, the Christoffel symbol would be a tensor. Most of the prob-
lems facing the GTR can be traced back to the non-tensorial
nature of the affine connections. Some of the problems will
be highlighted in the succeeding section. Due to the nature
of these affinities, the real problem is that in its bare form,
Riemann geometry does not provide a way to determine per-
missible and non-permissible coordinate and reference sys-
tem transformations. The new hybrid geometry on which the
UFT being championed is built, does have a way to deter-
mine permissible and non-permissible coordinate and refer-
ence system transformations.

2.4 Line element

Now, both the invariance and covariance of physical laws un-
der a change of the coordinate system and/or reference sys-
tem transformation is, in Riemann geometry, encoded and/or
expressed through the invariance of the line element: ds2 =

gµνdxµdxν. The line element is a measure of the distance be-
tween points in spacetime and remains invariant under any
kind of transformation of the reference system and/or the co-
ordinate system. This is the essence of the GTR. From this,
Einstein was able to deduce that gravitation is and/or can be
described by the metric tensor gµν thus, according to the Ein-
stein doctrine of gravitation, it (gravitation) manifests itself
as the curvature of spacetime. Through his (Einstein) own
intuition and imagination, he was able to deduce that the cur-
vature of spacetime ought to be proportional to the amount
of matter-energy present in spacetime — a fact that has since
been verified by numerous experiments.

2.5 Einstein’s field equations

The resulting gravitational law emerging from Einstein’s the-
sis stated above – namely that the curvature of spacetime
should be proportional to the amount of matter-energy present
in spacetime – is:

marble︷                    ︸︸                    ︷
Rµν −

1
2

Rgµν + Λgµν︸                    ︷︷                    ︸
beautiful and splendour

=

wood︷︸︸︷
κETµν︸︷︷︸

ugly and loathsome

(7)

where κE = 8πG/c4 is Einstein’s constant of gravitation, G =

6.67430(15) × 10−11 kg−1 m3 s−2 (CODATA 2018) is New-
ton’s universal constant of gravitation, Rµν is the contracted
Riemann curvature tensor, R is the Ricci scalar, and Tµν =

%gvµvν + pgµν is the stress and energy tensor where %g is the
density of matter, p is the pressure, vµ the four-velocity, and Λ

is the controversial ad hoc Cosmological Constant term added
by Einstein [37] so as to stop the Universe from expanding.
Einstein [37] was motivated to include the cosmological con-
stant because of the strong influence from the astronomical
wisdom of his day that the Universe appeared to be static and
thus was assumed to be so.

In the later years of his scientific life while in hot pursuit
of a unified field theory – according to his official scientific
biographer – Abraham Pais [38], Einstein would look at his
equation (7) and compare the left-hand side with marble and
the right-hand side with wood, and he would admire the mar-
ble side calling it beautiful and splendour and, on looking at
the right-hand side, he would be filled with sadness whereby
he would moan calling it ugly and loathsome. His prime and
hence immediate goal therefore (see e.g. [39]) was to turn the
ugly wood into beautiful marble.

All Einstein hoped for and wanted in his quest, was that
all the fields including the material field Tµν, be derived from
pure geometry, rather than “glue” the two seemingly indepen-
dent parts (i.e. the curvature Rµν −Rgµν/2 and material tensor
Tµν) via some mere constant κE . Einstein was extremely dis-
satisfied with this state of affairs [38] and thus hoped that a
theory would be found in the future where the material tensor
is derived directly from the geometry as a direct consequence
of the geometry itself. We must say, that, if our ideas prove
themselves worthy, it appears we have just managed to derive
the material fields from the Resultant World Geometry.

3 Present justification of gravitomagnetism

For example, take Maxwell’s Five Equations of Electrody-
namics [14] – i.e. the typical four equations that we are used
to involving the reciprocal E and B-fields plus the Law of
Conversation of Electric Charge and Current. Certainly, to
a foremost theoretical physicist such as Paul Dirac (see e.g.
[40–42]), these equations are without doubt beautiful in ev-
ery aspect of the word beauty; and to seal the matter, their
foundations are well verified and anchored in experience. But
asking what is the fundamental basis for their existence led
José Heras [43] to the tangibly solid mathematical fact that
Maxwell’s equations [14] are nothing more than a consequen-
ce of the conservation of electronic charge. That is to say,
what you need for the existence of Maxwell’s equations [14]
is just the conservation of electric charge and current; nothing
more and nothing less. Surely – to say that only the conserva-
tion of electronic charge and current is all that is needed for
Maxwell’s Equations to exist – this is certainly deep, isn’t it?

Given that the gravitational mass – which is responsi-
ble for gravitation – follows a similar law of conversation
in the form of the conservation of mass-energy and momen-
tum, rather trivially, one can easily extend this to the grav-
itational phenomenon and justify the need for gravitomag-
netism. Heras [43] did not make this trivial and obvious ex-
trapolation. In addition to this, we must say that we have not
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seen in the most recent literature any attempt to use Heras’
[43] existence theorem to justify gravitomagnetism. How-
ever, by way of analogy with the equations of electrodynam-
ics given the similarity between Newton and Coulomb’s in-
verse square laws, Maxwell [14] and Heaviside [29, 30] al-
ready had introduced gravitomagnetism. Sadly, because of
lack of experimental backing, gravitomagnetism derived in
this way has largely been treated as an endeavour belonging
to the realm of pseudo-science, rather than science. Many
scientists that have followed in an effort to try and investigate
this gravitomagnetic phenomenon have struggled to shrug-off

the pseudo-science tag hanging at the nimbus of gravitomag-
netism.

In the present section, we are going to give a brief ex-
position of Heras [43] and Behera’s [32] existence theorems.
These theorems are enough to convince sceptics that like elec-
tricity and magnetism, the gravitational phenomenon aught
to be described by a four-vector potential. In addition to
Heras [43] and Behera’s [32] existence theorems, this pa-
per will add a purely geometric justification and this geo-
metric justification follows the same geometric path as the
GTR wherein the gravitational phenomenon is described by
the metric. Because this demonstration – that we are going
to give of the geometric justification of gravitomagnetism –
uses the modern description of gravitation as a metric phe-
nomenon, it certainly is not far-off in its outlook, vision and
conception with the modern idea of a metric description of
gravity. Surely, this aspect of the present ideas must – some-
how – make the ideas propagated herein appeal to the reader.
In the next subsection, we shall give an exposition of Heras’
theorem [43].

3.1 Heras’s (2007) existence theorem

In a nutshell, Heras [43] formulated – what in our view is – a
very important Existence Theorem that states that, given any
space and time-dependent localized scalar and vector sources
satisfying the continuity equation – as is the case with electro-
magnetism – there exists in general, two retarded vector fields
(X,Y) that satisfy a set of four field equations that are similar
in nature and form to Maxwell’s equations. By applying the
theorem to the usual electrical charge and current densities,
the two retarded fields are identified with the reciprocal elec-
tric (E) and magnetic (B) fields and the associated field equa-
tions with Maxwell’s equations [14], i.e.: X := E,Y := B.

In brief, what Heras [43] proved is that if %e is the charge
density and ~J is the associated current corresponding to this
charge, i.e.:

∂%e

∂t
= −~∇ · ~J , (8)

then, there must exist two corresponding fields, X and Y, that

satisfy the following set of equations:

~∇ · X = α%e (a)

~∇ · Y = 0 (b)

~∇ × X + γ
∂Y
∂t

= 0 (c)

~∇ × Y −
β

α

∂X
∂t

= β ~J (d)

(9)

where α, β, γ are arbitrary positive constants and are related
to the speed of light c by the equation α = βγc2. In the
case of electricity and magnetism, if X and Y are identified
with the electric and magnetic fields respectively, then we will
have Maxwell’s classical equations [14] for electrodynamics
– in which case α = 1/ε, β = µ, and, γ = 1. Clearly, this
axiomatic and fundamental approach of deriving Maxwell’s
field equations [14] strongly suggests that electric charge and
current conservation – and nothing else – can be considered
to be the most fundamental assumption underlying Maxwell’s
equations [14] of electrodynamics. Next, we give an exposi-
tion of Behera’s [32] theorem.

3.2 Behera’s (2006) theorem

Using the Law of Conservation 0f Mass-Energy-Momentum
and the Poisson-Laplace equation (10), the endeavour of the
present section is to demonstrate – as Behera [32] did – that
much the same as the Coulomb electrical potential, the New-
tonian gravitational potential %g has an associated vector field.
We shall denote this vector field by the symbol Ag and we
shall call it the gravitomagnetic vector potential and in short
we shall call it the g-magnetic vector potential. This fact that
we can associate %g with Ag has been known for a consider-
able amount of time now. That is, for more than a century
(≥ 120 years), it has been known (since Heaviside [29, 30])
that the inclusion of a magnetic-like vector field in Newtonian
gravitational theory can be justified from two immutable facts
(see e.g. Behera [32]), i.e. from the Poisson-Laplace equation
for gravitation, namely:

~∇ · ~g = −4πG%g (10)

where ~g is the gravitational field intensity at a given point in
the gravitational field, %g is the gravitational potential, and
from the equation of conservation of mass-energy and mo-
mentum, namely: ∂%g/∂t = −~∇ · ~J, where ~J = %gv, is the
momentum density with v being the velocity of the material
whose density is %g.

In order to see this, from (10) we know very well that:
%̇g = −(1/4πG) (~∇ · ~̇g). Let us set: µ̃ = 1/4πG, so that: %̇g =

(1/4πG) (~∇ · ~̇g) can now be written as: %̇g = −µ̃~∇ · ~̇g. From
this, it follows that:

∂%g

∂t
= −~∇ · ~J = −~∇ ·

(̃
ε
∂~g

∂t

)
, (11)
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hence:

~∇ ·

[̃
ε
∂~g

∂t
+ ~J

]
= 0. (12)

Now, it is a bona fide mathematical fact that for any general
vector say ~B = ~B(x), the following holds always:

~∇ ·

 ~∇ × ~Bµ̃
 ≡ 0. (13)

where µ̃ is a constant – which, akin to the electromagnetic
permeability (µ0) and permittivity (ε0) of free space, we shall
define this constant µ̃ is such that: c̃ = 1/

√
µ̃ε̃, where c̃ is the

speed of gravity in free space. By comparing (12) and (13), it
follows that:

~∇ × ~B

µ̃
= −~J + ε̃

∂~g

∂t
. (14)

What this really means is that the gravitational field ~g has an
associated magnetic-like field ~B. Hence, one can make the
very bold conclusion that the very laws of Nature (10) and
∂%g/∂t = −~∇ · ~J invariably imply an associated magnetic-like
field for the gravitational field. Following tradition, we shall
call this magnetic-like field the gravitomagnetic field and for
short, we shall call it the g-magnetic field.

Now, (10) and (14) have a seductive and irresistible re-
semblance with Maxwell’s source-coupled equations somuch
so that for the brave that have set their mind on this, they have
proceeded without detouring to make a complete formal ana-
logue with Maxwell’s equations [14], in which process, the
phenomenon known as gravitomagnetism found its original
birth certificate. Therefore, as a complete set, the Field Equa-
tions of Gravitomagnetism, are:

~∇ · ~g = −%g/ε̃ (a)

~∇ × ~g = −
1
c̃
∂~B

∂t
(b)

~∇ · ~B = 0 (c)

~∇ × ~B = −µ̃~J +
1
c̃2

∂~g

∂t
. (d)

(15)

This completes our exposition of the non-geometric justifi-
cation of gravitomagnetism. In the next section, we shall
for self-containment and latter instructive purposes, present
a brief exposition of Weyl’s theory [1] and in the penultimate
thereof, we present our partial modification of it.

4 Weyl geometry

In §4.1, we give a brief exposition of Weyl’s geometry [1] and
thereafter in §4.2, we present the New Weyl Geometry (NWG)
upon which the proposed gravitomagnetic theory is based.

4.1 Original Weyl geometry

By way of addition of a conformal factor e2φ to the metric
gµν 7→ e2φgµν, Weyl [1] built his geometry by supplementing
the Christoffel affine connection Γλµν of Riemann geometry
with a tensorial affine W λ

µν:

W λ
µν = gλµAν + gλνAµ − gµνAλ , (16)

where Aµ is a four-vector that Weyl [1] had to define as the
electromagnetic four-vector appearing in Maxwell’s theory of
electrodynamics [14].

In Weyl’s geometry [1] where the length of vector chan-
ges from point to the next (see e.g. [33]), the new affine con-
nection Γλµν (or Christoffel-Weyl connection) is given by:

Γλµν = Γλµν + W λ
µν . (17)

The transformational properties of the new Christoffel-Weyl
affine connection Γλµν are identical to those of the original
Christoffel three-symbol Γλµν. So, from a “transformational
properties” (topological) standpoint, Weyl’s [1] addition is
justified.

The versatile and agile Weyl [1] was quick to note that
this new Christoffel-Weyl affine (17) is invariant under the
following rescaling of the metric gµν and the four-vector Aµ:

gµν 7−→ e2χgµν

Aµ 7−→ Aµ + κ−1
0 ∂µχ

, (18)

where χ = χ(r, t) is a well behaved, arbitrary, smooth, differ-
entiable, integrable and uniform continuous scalar function,
and κ0 is a constant with the dimensions of inverse length.
This constant κ0 has been introduced for the purposes of di-
mensional consistency, since we here assume that the four-
vector Aµ and the true scalar χ are dimensionless physical
quantities.

Now, because Maxwell’s electromagnetic theory [14] is
invariant under the same gauge transformation which thefour-
vector Aµ has been subjected to in (18), the great mind of
Weyl seized the golden moment and identified thisfour-vector
Aµ with the electromagnetic four-vector potential. Weyl went
on to assume that the resulting theory was a unified field the-
ory of gravitation and Maxwellian electrodynamics. Weyl’s
hopes where dashed – first, starting with Einstein’s lethal cri-
tique of the theory. Later, others joined Einstein in their mer-
ciless critique and dismissal of Weyl’s theory [1], where they
argued that despite its irresistiblegrandeurand exquisite beau-
ty, Weyl’s theory [1] cannot possibly describe the measured
reality of our present world.

4.2 New Weyl geometry

Despite the many ingenious attempts (starting with e.g. Weyl
[44, 45]) to rework and revive it over the course of time since

78 G. G. Nyambuya. Fundamental Geometrodynamic Justification of Gravitomagnetism



Issue 2 (October) PROGRESS IN PHYSICS Volume 16 (2020)

Fig. 1: Parallel Transport: The vector V is parallel transported in a
closed circuit. Upon arrival at its original position, the vector is not
equal to the original vector and this is a result of the curvature of the
space in question.

its inception, and its apparent refusal to go away as evidenced
by the continued interest∗ in this beautiful geometry of Weyl
[1], it is a generally accepted view that as a basis for a phys-
ical theory, Weyl’s [1] arcanely beautiful geometry exists be-
yond redemption. This geometry is the geometry on which
[1] made his attempt – the first such – on a UFT of the grav-
itational and electromagnetic fields. Against this deeply en-
trenched belief in the non-redeemability of the Weyl [1] ge-
ometry into something with a bearing and correspondence
with physical and natural reality, we made in [33] the endeav-
our of calling forth this theory out of the tomb where it was
resting. In the present, we go further to give it a perdurable
fresh breath of life.

As pointed out by e.g. Schrödinger and Einstein [3, 5–7]
and is well known, is that – tensorial affine connections pre-
serve both the length and direction of a vector upon parallel
transport. The Christoffel symbols of Riemann geometry pre-
serve only the length and the angle changes from one point
the next and this is where the issue with Einstein’s GTR [55]
lies. Preservation of both the length and angle of a vector
upon parallel transport has always been known to be a funda-
mental key to the attainment of a truly generalized Theory of
Relativity [56, 57].

The proposed RWS is a spacetime which preserves both
the length and direction of a vector upon parallel transport.
As shown in Fig. 1, say the vector V is transported in a closed
circuit such that it returns to its original position and V′ is the
resulting vector after parallel transport; in normal Riemann
geometry, while |V| = |V′|, the angle δθ between these two
vectors, while it can in some cases equal zero, is not neces-
sarily zero i.e. V ·V′ , 0. However, on the RWS, we have for
all points of space and time on this spacetime the constraints
|V| = |V′| and V · V′ = 0: i.e. both the length and direction of
a vector are preserved upon parallel transport of any vector.

∗See e.g. [46–54].

The preservation of both the length and angle on the RWS
is attained by requiring that the affine connections of this
spacetime be tensors. As far as we can tell from our wide
ranging searches across the length, breath and depth of the
available literature on unified theories (cf. [56, 57]), with the
failure to obtain tangible results on this front, the idea of ten-
sorial affinities as key to the attainment of a unified field the-
ory seems to have naturally fallen on the wayside with very
few – if any – researchers taking it up. As one will be able
to judge for themselves and by themselves, the novelty of our
approach lies in our treatment of the unit vectors.

As pointed out in the instance of (18), to attain the de-
sired tensorial affinities, we noted that Weyl [1] had built his
very beautiful but failed unified field theory of gravitation and
electromagnetism on a pseudo-Riemann spacetime that is in-
variant under the re-gauging of the metric from gµν to e2χgµν:
i.e. after the transformation gµν 7−→ e2χgµν, the field equa-
tions of the resulting geometry or theory thereof remain un-
altered provided the four-vector of his theory Aµ also under-
went the following gauge transformation: Aµ 7−→ Aµ+κ

−1
0 ∂µχ.

The mathematical structure of the resulting Weyl unified field
theory, insofar as the properties of the affine connections is
concerned, this theory – despite its elegant introduction of a
four-vector field – has the same topological deformations as
the original Riemann spacetime.

4.2.1 Riemann-Weyl metric

As already pointed out in §4.1, Weyl added a tensor W λ
µν to

the Christoffel three-symbol Γλµν, that is to say, if Γ̃λµν is the
new Christoffel symbol for the Weyl space, then:

Γ̃λµν = Γλµν + W λ
µν . (19)

Because W λ
µν is a tensor, the fundamental transformational

properties of the new Christoffel three-symbol Γ̃λµν are the
same as the old Christoffel three-symbol Γλµν; therefore, the
Weyl space inherits the same topological and structural de-
fects and problems of the Riemann spacetime – that is, prob-
lems to do with non-tensorial affinities.

In [33], for the metric of the RWS gµν, instead of making
it conformal only at the instance of a gauge transformation,
we chose that it (gµν) be intrinsically and inherently confor-
mal. That is to say, the fundamental metric gµν of the RWS be
such that gµν = % gµν, where gµν remains as the metric of the
usual Riemann spacetime and this metric is what is used on
the RWS to raise and lower the Greek indices (µν . . . ) just as
happens in normal Riemann spacetime. In Weyl’s theory [1],
the function % is a scalar. However in [33], this function takes
a decisive new role: . . . it (the scalar χ) must – for better or
for worse, yield in the favour of our desideratum – i.e. it must
yield for us nothing but tensorial affinities. This is our quest,
desire and uncompromising demand.
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Thus, in recasting Weyl’s theory [1] so that it overcomes
once and for all-time Einstein’s criticism, we will not take
the traditional route that was taken by Weyl [1] because in so
doing, we will fall into the same trap which the great Weyl
fell victim to. At our point of departure, we wave goodbye
to Riemann geometry and efferently prepare to embrace a to-
tally new geometry, a hybrid Riemann geometry which has
the same feature as Weyl [1], less of course the change of
length of vectors under transformations or translations. The
route that we are about to take is equivalent and the reason
for changing the sails is that the present route allows us to
demonstrate later how Weyl would have overcome Einstein’s
critique that gave the theory a still birth. Actually, this route
allows us to pin down exactly where Weyl’s theory [1] makes
an unphysical assumption.

4.2.2 Pseudo-scalar and affine vector

In mathematics – linear algebra in particular – a pseudo-sca-
lar is a function which upon a transformation of the coordi-
nate system behaves like a true scalar – albeit – upon a par-
ity transformation, it changes sign (see e.g. [58, 59]). A true
scalar does not do this, it remains invariant. As has already
been made clear in the exposition of Weyl’s theory [1] is the
fact that one of the most powerful ideas in physics is that
physical laws do not change when one changes the coordinate
system used to describe these physical laws. The fact that a
pseudo-scalar reverses its sign when the coordinate axes are
inverted clearly suggests that these objects are not the best
objects to describe a physical quantity, as this could percolate
to the physical laws themselves.

Now, because we want to introduce a new kind of pseudo-
scalar that will help us in our endeavours to obtain tensorial
affinities, in order to distinguish this new and soon to be de-
fined pseudo-scalar from the above described pseudo-scalar,
we shall call the above described pseudo-scalar a pseudo-
scalar of the first kind, and the new pseudo-scalar to be de-
fined shortly, a pseudo-scalar of the second kind. To that end,
we shall hereafter start off by defining a “new” mathematical
object, Vµ, that we shall call an affine vector. This quantity,
Vµ, is the derivative of the dot-product of an arbitrary four-
vector Bλ and the (non-arbitrary) four-position xλ i.e.:

Vµ =
∂µS

S
= ∂µ ln S (20)

where:
S = Bδxδ . (21)

From (20) and (21), it follows that:

Vµ = Bµ +
xδ∂µBδ

S
. (22)

Clearly, upon a coordinate and/or transformation of the refer-
ence system, the vector-like quantity Vµ′ = ∂µ′S ′/S ′ is related

to Vµ as follows:

Vµ′ =
∂xδ

∂xµ′
Vδ +

∂2xδ

∂xµ′∂xΩ′
. (23)

From (23), we see that the quantity Vµ transforms like the
affine tensor hence our calling it – affine vector. The scalar
S in (21) is what we shall define as a pseudo-scalar of the
second kind. Such a scalar has the property that its four-
position derivative is not a four-vector as one would expect
in the case of a true scalar. In the next section, we shall now
consider the Riemann-Weyl covariant derivative in the light
of the new mathematical object that we have just defined –
i.e. the pseudo-scalar of the second kind.

4.2.3 Riemann-Weyl covariant derivative

Taking into account the above defined pseudo-scalar of the
second kind, as we consider the Riemann-Weyl covariant der-
ivative, we will begin with the usual Riemann covariant deri-
vative gµν;σ = 0 of Riemann geometry. As already alluded,
the condition gµν;σ = 0 is the foundation stone of Riemann
geometry. We will uphold this covariant derivative condition
under the Weyl conformal transformation gµν 7−→ gµν = %gµν
of the metric i.e. gµν;σ = 0. Likewise, the condition gµν;σ =

0 is to be taken as the foundation stone of the new hybrid
Riemann-Weyl geometry. Written in full, the equation gµν;σ =

0 is given by:

gµν;σ = %

[
gµν,σ + gµν

(
∂σ%

%

)
− gµδΓδνσ − gδνΓδµσ

]
= 0 (24)

where the “bar” on Γλµν has been put so that it is made clear
that this affine is neither the Christoffel symbol nor the usual
Weyl connection, but is the new hybrid Riemann-Weyl con-
nection. In conformity with the definition of a pseudo-scalar
of the second kind given in (21), we shall at this point set or
define the %-quantity as:

% = −2Jδxδ (25)

where Jσ is the (gravitational) four-current density. With this
definition for %, it follows that (24) will reduce to:

gµν,σ − gµδΓδνσ − gδνΓδµσ = 2 (Jσ + Qσ) gµν (26)

where Qσ = xδ∂σJδ/% = xδ∂σJδ/Jδxδ. As is the case with
Weyl’s original geometry [1], the covariant derivative gµν;σ
does not vanish since gµν;σ , 0.

4.2.4 Calculation of the Riemann-Weyl affine

Now – we have to calculate the resulting affine connections
and for this, we have to write down the three expressions that
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result from an anti-clockwise cyclic permutation of the in-
dices µ, ν and σ in gµν,σ, i.e.:

gµν,σ − gµδΓδνσ − gδνΓδµσ = 2 (Jσ + Qσ) gµν (a)

gσµ,ν − gσδΓδµν − gδνΓδσµ = 2 (Jν + Qν) gσµ (b)

gνσ,µ − gνδΓδσµ − gδµΓδνσ = 2
(
Jµ + Qµ

)
gνσ (c)

(27)

As usual, subtracting from (27) (a) the sum of (27) (b) and (c),
and making use of the symmetries of gµν and Γλµν (i.e. gµν =

gνµ and Γλµν = Γλνµ), one obtains:

gµν,σ − gσµ,ν − gνσ,µ + gσδ
[
Γδµν + gδνΓδσµ

]
=

= 2
[
(Jσ + Qσ) gµν − (Jν + Qν) gσµ −

(
Jµ + Qµ

)
gνσ

]
.

(28)

Contracting the σ-index in (28) by multiplying (28) through-
out by gσλ and thereafter resetting this σ-index to δ, we ob-
tain:

− gδλ
[
gδµ,ν + gνδ,µ − gµν,δ

]
+ 2Γλµν =

− 2gδλ
[
(Jν + Qν) gδµ +

(
Jµ + Qµ

)
gνδ − (Jδ + Qδ) gµν

]
,

(29)

hence:
Γλµν = Γλµν −W λ

µν − Q λ
µν , (30)

where Γλµν is the usual Christoffel three-symbol given in (5),
and

W λ
µν = gλµJν + gλνJµ − gµνJ λ (31)

is the (redefined) Weyl tensor, and the new non-tensorial ob-
ject:

Q λ
µν = gλµQν + gλνQµ − gµνQ λ (32)

is a new affine connection that is defined thereon the hybrid
Riemann-Weyl space and its purpose is to allow the hybrid
Riemann-Weyl affine Γλµν to be a tensor. Let us call this affine
the Q -affine connection or simply the Q -affine. The geometry
that we have just described is what we shall call the New Weyl
Geometry (NWG).

4.2.5 Transformation of the Riemann-Weyl affine

Now from (6), we know that the old Christoffel three-symbol
Γλµν transforms as follows:

Γλ
′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Γδµν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′
(33)

and that W λ
µν is a tensor, hence, it transforms like a tensor.

Verily, if the Q -affine Q λ′

µ′ν′ were to transform just as the Chris-
toffel three-symbol Γλ

′

µ′ν′ , as follows:

Q λ′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Q δ
µν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′
, (34)

then it follows and goes without saying that the object Γλµν
will clearly be a tensor. Because Qµ is an affine vector, the
Q -tensor will transform as desired, that is, as given in (34),
hence the object Γλµν will be a tensor as desired. What this all
means is that Q is a pseudo-scalar and not a pure scalar. This
is exactly what we did in [33]. Therein [33], we achieved this
by forcing Qµ to yield in the favour of our desires and trans-
form as an affine vector as defined in §4.2.2. The resulting
theory that one can build from this NWG has been presented
in [33] and, in the present paper, it is this same theory that we
are now improving on.

As one can verify for themselves, this theory of [33] pro-
duces field equations that we are already familiar with – i.e.
the Maxwell equations [14]. At this stage of the development
of the theory – whether or not the resulting theory is correct
– what is important for the reader to appreciate – as has just
been here demonstrated thus far – is that a tensorial affine
theory can be attained. The problem suffered by Weyl’s the-
ory [1] does not apply to the NWG.

5 Theory

We here lay down our theory. What makes the present work
different from the preceding works in [8–10] is that the pre-
sent work incorporates the new results from various research
that we have conducted. Because we shall at five instances
(i.e. (37), (44), (79a), (79b), and (79c] need to do some gauge
fixing, we shall start off by addressing this issue of gauge
fixing, i.e. within the context of the present work.

5.1 Gauge fixing

In the physics of Gauge Theories, gauge fixing (also called
choosing a gauge) denotes a mathematical procedure for cop-
ing with redundant degrees of freedom in the field variables.
The introduction of a gauge effectively reduces the number of
degrees of freedom of the theory. In the present expedition,
we shall need the fixing of the gauge and this fixing shall be
done in such a manner that one seeks to obtain equations that
are congruent with reality. That is, equations that we are al-
ready used to know. We shall identify two types of gauges,
i.e.:

1. Natural Gauge: A natural gauge shall here be understood
as an exogenous constraint the theory must satisfy in order
to meet a global physical requirement. For example, in the
present pursuit, we seek a theory based on a spacetime which
is such that the magnitude and direction of a vector (tensor)
upon parallel transport remains unaltered by the act or pro-
cedure of parallel transport of the vector on this spacetime.
So, the gauge fixing that will lead us to the attainment of this
global symmetry, we shall call a natural gauge or – alterna-
tively – an exogauge constraint.

2. Gauge Constraint: A gauge constraint shall here be under-
stood as an endogenous constraint the theory must satisfy in
order to yield equations that are congruent with reality as we
are used to know. For example, in the present pursuit, we
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seek a theory that will at least yield field equations that are
similar to Maxwell’s equations [14]. So, the gauge fixing
that will lead us to the attainment of such equations, we shall
call a gauge constraint or – alternatively – an endogauge con-
straint.

Each time we encounter a natural gauge(exogauge constraint)
or a gauge constraint (endogauge constraint), we shall make
a clear indication of this.

5.2 Hybrid Riemann-Weyl tensor

From Fig. 1, if say we have a (four-) vector vλ and we parallel
transport it along a closed circuit ABCD in the order (A 7−→
B) then (B 7−→ C) then (C 7−→ D) and then finally (D 7−→ A),
if the space in question has a non-zero curvature, upon arrival
at its original location, while the length of this vector may be
equal to the length of the original vector, its direction will at
the very least be different. The infinitesimal changes of this
vector’s direction and length along these paths (see e.g. [10,
for details of the derivation]), are:

dvλ = Rλ
µσνv

µdaνdbσ , (35)

where:

Rλ
µσν =

linear terms︷         ︸︸         ︷
Γλµν,σ − Γλµσ,ν + ΓλδσΓδµν − ΓλδνΓ

δ
µσ︸              ︷︷              ︸

non−linear terms

. (36)

is the Hybrid Riemann-Weyl Tensor.

5.3 Linear Riemann tensor

Given that we have attained a geometry with tensorial affini-
ties, it goes without saying that – insofar as the beleaguering
problems besieging pure Riemann geometry is concerned –
now is our time to reap the sweet fruits of our hard labour
i.e. it is time to take the fullest advantage of the tensorial na-
ture of the affinities. We now have at our disposal the math-
ematical and physical prerogative, legitimacy and liberty to
choose a spacetime where the non-linear terms do not van-
ish identically i.e. Γλµν , 0, but are bound by the gauge con-
straint∗:

ΓδµνΓ
λ
δσ = ΓλδνΓ

δ
µσ . (gauge constraint) (37)

Clearly, from this, the resulting Riemann tensor becomes lin-
ear, i.e.:

Rλ
µσν = Γλµν,σ − Γλµσ,ν . (38)

Just like that, we have thrown the non-linear terms out of our
sight once and for all-time.

Clearly and without any doubt, this fact that we have cho-
sen a spacetime that is governed by the gauge constraint (37),

∗This gauge constraint allows us to obtain linear equations. This con-
straint is made possible by the fact that the affine connections are tensors.

means that we have just rid ourselves of the troublesome non-
linear terms in the Riemann tensor (38), because with this
beautiful and elegant choice (37), the non-linear terms now
vanish identically to become but footnotes of history. The
justification for this choice of gauge will become clear later
when we derive from this tensor (38), the Maxwell equa-
tions [14] that we are used to know – albeit this time, these
equations are being derived not for the electrodynamic phe-
nomenon, but for the gravitodynamic phenomenon. In the
next subsection, we will redefine the Riemann metric gµν in
terms of the four-vector field Aµ via the decomposition of the
metric.

5.4 Decomposition of the metric tensor

A key feature of the present theory, as well as the previous
versions of it as given in [8–10], is that of the decomposition
of the metric tensor. The Riemann metric gµν is a compound
rank two tensor field symmetric in the µν-indices and because
of this symmetry, it consists of ten independent functions. In
the present, the components of the metric tensor gµν are a
product of the components of a four-vector field Aµ, thus –
this metric consists of four independent functions instead of
ten as is the case in pure Riemann geometry.

The covariant Aµ and contravariant Aµ four-vectors are
here to be defined as follows:

Aµ = (Aµ)† (39)

where the dagger-operation (†) is the usual transpose-com-
plex-conjugate operation applied to the object in question†,
while the covariant gµν, contravariant gµν and mixed covari-
ant and contravariant metric g ν

µ , g
µ
ν tensors are defined in

terms of the covariant Aµ and contravariant Aµ four-vectors
as follows:

gµν = AµAν , g ν
µ = AµAν ,

gµν = AµAν , gµν = AµAν .
(40)

The mixed covariant and contravariant metric g ν
µ and gµν ten-

sors are in Riemann defined such in terms of the covariant gµν
and contravariant gµν as follows:

g ν
µ = gµδgδν = AδAδg ν

µ = g δ
δ g ν

µ = δ ν
µ

gµν = gµδgδν = AδAδg
µ
ν = gδδg

µ
ν = δ

µ
ν

(41)

where δ ν
µ and δ

µ
ν are the usual Kronecker-Delta functions.

From (41), it follows that:

g δ
δ = AδAδ = gδδ = AδAδ = 4 . (42)

†The four-vector Aµ can either be a 4× 4 or zero rank object. We are not
sure at the moment which is which. If it turns out that Aµ is a zero rank object,
then the dagger-operation simple reduces to a complex-conjugate operation.
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On this new Riemann-Weyl spacetime, the usual raising and
loweringof the indices applicable in Riemanngeometryholds,
i.e.:

Vµ = gµδVδ = g δ
µ Vδ

Vµ = gµδVδ = gµδV
δ
. (43)

With the metric now having been redefined and its nature
regarding the lowering and raising of indices, and that the
length of the four-vector Aµ is four units throughout all space-
time, we will proceed in the next subsection to deduce the first
set of the field equations.

5.5 Field equations

Having set the stage, we shall now proceed to write down the
resulting field equations.

5.5.1 Field equations I

If both the length and angles are to remain unaltered upon
parallel transport, this can only happen if the curvature tensor
Rλ
µσν vanishes at all points of this spacetime, i.e.:

Rλ
µσν = 0 . (natural gauge) (44)

Eq. (44) is a natural equation of the geometry; it emanates
from the hypothesis of requiring that both the length and an-
gles are to remain unaltered upon parallel transport. In gen-
eral, the affine Γλµν is non-vanishing, i.e. Γλµν , 0. So, the
present Hybrid Riemann-Weyl Spacetime (HRWS) is a curvat-
ure-less space because vectors maintain or preserve both their
length and orientation under parallel transport. Embedded or
cojoined in this HRWS curvature tensor Rλ

µσν are the Riemann
curvature tensor Rλ

µσν and the geometrically derived material
tensor T λ

µσν. Because of the vanishing nature of HRWS cur-
vature tensor Rλ

µσν, together with its linear nature (see §5.3),
we will in the next subsection use these facts to unbundle
the Riemann curvature tensor and the material tensor, thereby
achieve what Einstein desired but failed to achieve – i.e. a
material field derived from pure geometry.

5.5.2 Field equations II

Now that we have a theory linear in the curvature tensor –
i.e. a theory in which the non-linear terms vanish – we can
use this to separate the Weyl terms W λ

µσν from the Riemann
terms Rλ

µσν and as well from the Q -tensor Q λ
µσν. That is, we

can now rewrite the linear Riemann-Weyl curvature tensor
Rλ
µσν as is given in (38) as follows:

Rλ
µσν = Rλ

µσν −
(
W λ

µσν + Q λ
µσν

)︸           ︷︷           ︸
T λ
µσν

(45)

where:
Rλ
µσν = Γλµν,σ − Γλµσ,ν (a)

W λ
µσν = W λ

µν,σ −W λ
µσ,ν (b)

Q λ
µσν = Q λ

µν,σ − Q λ
µσ,ν (c)

(46)

are the linear Riemann curvature tensor (46a), the linear Weyl
curvature tensor (46b), and the linear Q -curvature tensor
(46c) or simply the Q -tensor.

An excogitative inspection of the Riemann curvature ten-
sor will clearly reveal that this tensor is a function of the four-
vector field Aµ, i.e. Rλ

µσν = Rλ
µσν(Aα), while the Weyl and

the Q -tensors are functions of %, i.e. W λ
µσν = W λ

µσν(Jα) and
Q λ
µσν = Q λ

µσν(%). The Q -tensor is a direct function of % while
the Weyl tensor is not – remember (25) that Jα = − 1

2∂α%,
hence, as said W λ

µσν = W λ
µσν(%). Why are we talking of the

functional dependence of these tensors?
The reason for excogitating on the functional dependence

of these tensors is that we not only want to, but shall identify
the Riemann curvature tensor as describing Einstein’s beau-
tiful marble that, in Einstein’s vision and desideratum, is de-
scribed by the metric tensor gµν; while the Weyl curvature
tensor and the Q -curvature tensor describe Einstein’s ugly
wood – albeit – varnished (polished) wood this time around
since the field % is later to be identified with the beautiful –
albeit – arcane quantum mechanical object, namely the quan-
tum probability amplitude.

After the above deliberations, it therefore makes much
sense to house the Weyl curvature tensor and the Q -curvature
tensor under one roof since they constitute the material tensor.
To that end, let us represent the sum total material curvature
tensor using the symbol T λ

µσν where:

T λ
µσν = W λ

µσν + Q λ
µσν . (47)

With the above definition (47) of the material tensor, it fol-
lows that the Riemann-Weyl curvature tensor Rλ

µσν can now
be written as an object comprising two main tensors express-
ing the fields (Rλ

µσν) and their corresponding material (T λ
µσν)

counterpart:
Rλ
µσν = Rλ

µσν − T λ
µσν . (48)

What we have done – from (45) to (48) above – is to indulge
and cajole the reader to the idea of envisioning the Riemann-
Weyl tensor in Einstein’s vision of a marble and wood com-
ponent, albeit, with the wood now recast into its quantum me-
chanical description.

Now, from (44) and (48), it follows that:

Rλ
µσν = T λ

µσν . (49)

At this point – if it turns out that this theory proves to be a cor-
rect description of physical and natural reality as we know it –
we have no doubt in our mind that if Einstein were watching
from above or from wherever in the interstices of spacetime,
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he must be smiling endlessly because his lifelong endeavour
was to derive∗ the material tensor from pure geometry and not
to insert it by sleight of mind as he did with his gravitational
field (7). In-line with Einstein’s deepest quest and longing
insofar in attaining a final UFT of all the forces of Nature,
we have in the present derived the material tensor from pure
geometry.

As we saw previously in §2.5, Einstein’s ultimate goal
was to turn wood into marble so to speak, which meant deriv-
ing the material field from pure geometry. Einstein wanted to
find the final theory; this he pursued to the very end of his life
to a point that while on his deathbed on April 18, 1955, in-
stead of worrying about the imminent end of his fruitful life,
he asked for a pen and his notes so that he could continue to
work on the unified field theory that he was working on at the
time. It is sad to say that Einstein never laid a fertile egg on
this front – i.e. the front of unification.

Be that as it may, it is without an iota of doubt that we say
that if what is before us proves itself to have a correspondence
with physical and natural reality, then we can safely say we
have achieved one of Einstein’s goals to attaining the “elicit
dream of a Final Theory” by deriving the material tensor from
pure geometry – wood, one way or the other, has finally been
turned into marble! This we are certain has been achieved
in the present UFT. The only question is, Does the theory
correspond with physical and natural reality? This we leave
in the able hands of our reader so that they may be their own
judge on that very important matter.

5.5.3 Field equations III

First Voss-Bianchi Identities: Further, we shall derive other
field equations. We know that the Riemann curvature tensor
satisfies the first Voss-Bianchi† identity, namely:

Rλ
µσν + Rλ

νµσ + Rλ
σνµ ≡ 0 . (50)

From this first Bianchi identity and as well from (49), it fol-
lows that:

T λ
µσν + T λ

νµσ + T λ
σνµ ≡ 0 . (51)

In the next subsection, we present the second Voss-Bianchi
identity.

∗Here, we must hasten to say that we have not exactly derived the ma-
terial tensor field T λ

µσν, but merely justified its physical existence on the fun-
damental basis of the need for tensorial affinities. Thus, this material field
is not only justifiable on a fundamental physical level, but very much a part
and parcel of the whole edifice of the marvellous structure of the spacetime
continuum.

†In the wider literature – if not every common text where these identi-
ties are considered – they are referred to as the Bianchi Identities after the
Italian mathematician – Luigi Bianchi (1856-1928) who published them in
1902 [60]. However, the reality to the matter is that these identities were first
derived and published by the German mathematician Aurel Voss (1845-1931)
in 1880 [61]. Hence, keeping matters in their correct historic record and per-
spective, and to give due credit and acknowledgement of the work of Aurel
Voss, we herein refer to these identities ((50) and (52)) as the Voss-Bianchi
Identities.

5.5.4 Field equations IV

Second Voss-Bianchi Identities: Furthermore, we are going
to derive our last set of field equations. We know that the
Riemann curvature tensor satisfies the second Voss-Bianchi
identity, namely:

Rλ
υµσ,ν + Rλ

υνµ,σ + Rλ
υσν,µ ≡ 0 . (52)

From this second Bianchi identity and as well from (49), it
follows that:

T λ
υµσ,ν + T λ

υνµ,σ + T λ
υσν,µ ≡ 0 . (53)

In the next section, we shall explore (49), (50), (51), (52) and
(53), and from these equations, we shall see that one is able
to obtain field equations that we are already familiar with.
Before we depart this section, we must say that while we have
shown that the material tensor T λ

υµσ,ν does satisfy the Voss-
Bianchi identities, the subcomponents (W λ

υµσ,ν; Q λ
υµσ,ν) of this

tensor also satisfy the Voss-Bianchi identities, i.e.:

W λ
µσν + W λ

νµσ + W λ
σνµ ≡ 0 (a)

Q λ
µσν + Q λ

νµσ + Q λ
σνµ ≡ 0 (b)

W λ
υµσ,ν + W λ

υνµ,σ + W λ
υσν,µ ≡ 0 (c)

Q λ
υµσ,ν + Q λ

υνµ,σ + Q λ
υσν,µ ≡ 0 (d)

(54)

where in (54a,b) and (54c,d), we have the first and second
Voss-Bianchi identities of W λ

υµσ,ν and Q λ
υµσ,ν respectively.

6 Affine, Riemann and the material tensor

In the present section, we are going to calculate or express
the affine tensor Γλµν, the Riemann tensor Rµν, and the mate-
rial tensor Tµν in terms of a Maxwell field tensor Fµν. This
exercise is meant to prepare us for the work to be conducted
in §7 where we are going to write down our desired Maxwell
Gravitomagnetic Field Equations.

6.1 Affine tensor

We already know from (5) that the affine connection Γλµν is
such that 2Γλµν = gδλ

(
gδµ,ν + gνδ,µ − gµν,δ

)
, and from the pre-

sent new findings that the decomposed Riemann metric tensor
is such that gµν = AµAν. What we want – and will – do here is
to substitute the decomposed metric into the affine wherefrom
we expect to obtain the usual Maxwell-type field tensor of
electromagnetism. To that end, we substitute the metric into
the affine and then differentiate this metric as required by the
differentials in the affine – doing so, we obtain:

2Γλµν = gδλ
[ Term I︷︸︸︷

AδAµ,ν +

Term II︷︸︸︷
AµAδ,ν +

Term III︷︸︸︷
AδAν,µ +

+ AνAδ,µ︸︷︷︸
Term IV

−AµAν,δ︸︷︷︸
Term V

− AνAµ,δ︸︷︷︸
Term VI

]
.

(55)
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Now, we shall identify the labelled terms in (55), that is, terms
that will yield for us the desired Maxwell-type field tensor of
electromagnetism.

1. Terms II and V: Combining Term II and Term V, we will
have:

AµFδν = Aµ

(
Aδ,ν − Aν,δ

)
(56)

where:
Fδν = Aδ,ν − Aν,δ (57)

is the gravitomagnetic field tensor. This tensor (57) is our de-
sired Maxwell-type field tensor of electromagnetism – albeit
– this time – as per our desire – it is appearing in the equations
of gravitation and not electromagnetism.

2. Terms IV and VI: Further, combining Term IV and Term VI,
we will have:

AνFδµ = Aν

(
Aδ,µ − Aµ,δ

)
(58)

where – as in (57):

Fδµ = Aδ,µ − Aµ,δ (59)

is the same gravitomagnetic field tensor – the only difference
is the interchange of the indices.

3. Terms I and III: Lastly, combining Term I and Term III, we
will have:

AδΩµν = Aδ

(
Aµ,ν + Aν,µ

)
(60)

where – this time:

Ωµν = Aµ,ν + Aν,µ (61)

is not a gravitomagnetic field tensor, but some non-tensorial
object that will prove to be absolutely essential and necessary
in the generation of the source-free Maxwell-type equations
for gravitomagnetism.

From the foregoing, it follows from (57), (59) and (61), that:

Γλµν =
1
2

gδλ
[
AµFδν + AνFδµ + AδΩµν

]
. (62)

Now, multiplying the terms in the square bracket by gδλ, the
meaning of which is that we have to raise the δ-index in these
square brackets and reset it so that it now equals λ, i.e.:

Γλµν =
1
2

[
AµF

λ
ν + AνF

λ
µ + AλΩµν

]
. (63)

In (63), we most importantly have expressed the Christoffel
affine in terms of the Maxwell field tensor Fµν. In the next
section, we shall proceed to express the Riemann tensor in
terms of the same Maxwell field tensor Fµν.

For the purposes of convenience in the coming computa-
tions to be made in the subsequent sections, we shall write
down the Christoffel affine (i.e. (63)), as follows:

Γλµν = Γ̆λµν + Ωλ
µν (64)

where:
Γ̆λµν =

1
2

(
AµF

λ
ν + AνF

λ
µ

)
(65)

and:
Ωλ
µν =

1
2

AλΩµν . (66)

The object Γ̆λµν is a tensor while Ωλ
µν is not, for, upon a trans-

formation of the system of coordinates, this affine Ωλ
µν trans-

forms in the exact same manner as the Christoffel symbols
(see (6)), that is, it transforms as follows:

Ωλ′

µ′ν′ =
∂xλ

′

∂xδ
∂xµ

∂xµ′
∂xν

∂xν′
Ωδ
µν +

∂xλ
′

∂xδ
∂2xδ

∂xµ′∂xν′
. (67)

In the next subsection, as we continue to work toward the
writing down of the resultant field equations, we shall express
the Riemann tensor in terms of the gravitomagnetic Maxwell-
type tensor Fµν.

6.2 Riemann tensor

We are not only going to express the Riemann tensor in terms
of the gravitomagnetic Maxwell-type field tensor Fµν but de-
compose this tensor into three tensors. To that end, we will
start-off by substituting the newly re-expressed Christoffel
affine in (64) into the linear Riemann tensor (46a); so doing,
we obtain:

Rλ
µσν = Γ̆λµν,σ − Γ̆λµσ,ν + Ωλ

µν,σ −Ωλ
µσ,ν

= R̆λ
µσν + Ωλ

µσν

(68)

where:
R̆λ
µσν = Γ̆λµν,σ − Γ̆λµσ,ν

Ωλ
µσν = Ωλ

µν,σ −Ωλ
µσ,ν

(69)

are tensors. The reader will need to verify for themselves that
– indeed – these objects are tensors.

Further, we will express R̆λ
µσν in terms of the field tensor

Fµν by substituting Γ̆λµν as it is given in (65); so doing, one
obtains:

R̆λ
µσν =

1
2

(
AµF

λ
ν,σ + AνF

λ
µ,σ

)
−

−
1
2

(
AµF

λ
σ,ν + AσF

λ
µ,ν

)
+

+
1
2

(
Aµ,σF

λ
ν + Aν,σF

λ
µ

)
−

−
1
2

(
Aµ,νF

λ
σ + Aσ,νF

λ
µ

)
= Ŕλ

µσν + R̀λ
µσν

(70)

where:
Ŕλ
µσν =

1
2

(
AµF

λ
ν,σ + AνF

λ
µ,σ

)
−

1
2

(
AµF

λ
σ,ν + AσF

λ
µ,ν

) (71)

and:
R̀λ
µσν =

1
2

(
Aµ,σF

λ
ν + Aν,σF

λ
µ

)
−

−
1
2

(
Aµ,νF

λ
σ + Aσ,νF

λ
µ

) (72)
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are tensors. Once again, the reader will need to verify for
themselves that these objects are indeed tensors. Therefore,
from (68) and (70), it follows that:

Rλ
µσν = Ŕλ

µσν + R̀λ
µσν + Ωλ

µσν . (73)

In (73), we have – as desired – not only re-expressed the Rie-
mann tensor, but decomposed it into three part tensors. Now
– in the next subsection, we will conduct the same exercise
with the material tensor. All this re-expression and decom-
position is all gearing up for the derivation of the result field
equation of the theory.

6.3 Material tensor

Just as we have decomposed the Riemann curvature tensor
into three parts in (73), we are now going to decompose the
material curvature tensor T λ

µσν into three parts by decompos-
ing into two parts, the linear Weyl curvature tensor W λ

µσν. To
that end, decomposing the Weyl part of the material tensor
field by differentiating the products gλµJν, we obtain that:

T λ
µσν =

(
gλµJν,σ + g λ

ν Jµ,σ − gµνJ λ,σ
)
−

−
(
gλµJσ,ν + g λ

σ Jµ,ν − gµσJ λ,ν
)
+

+
(
gλµ,σJν + g λ

ν,σJµ − gµν,σJ λ
)
−

−
(
gλµ,νJσ + g λ

σ,νJµ − gµσ,νJ λ
)
+

+ Q λ
µσν

= T́ λ
µσν + T̀ λ

µσν + Q λ
µσν

(74)

where the newly introduced tensors T́ λ
µσν and T̀ λ

µσν are explic-
itly defined as follows:

T́ λ
µσν =

(
gλµJν,σ + g λ

ν Jµ,σ − gµνJ λ,σ
)
−

−
(
gλµJσ,ν + g λ

σ Jµ,ν − gµσJ λ,ν
)

=
[
g λ
ν Jµ,σ − gµνJ λ,σ

]
−

[
g λ
σ Jµ,ν − gµσJ λ,ν

] (75)

and:
T̀ λ
µσν =

(
gλµ,σJν + g λ

ν,σJµ − gµν,σJ λ
)
−

−
(
gλµ,νJσ + g λ

σ,νJµ − gµσ,νJ λ
)
.

(76)

Written in a much clearer manner:

T λ
µσν = T́ λ

µσν + T̀ λ
µσν + Q λ

µσν . (77)

At this juncture, having now written down the Riemann and
the material curvature tensors in the manner that we have
written them in (73) and (77), we are now ready to explore
the Resultant Field Equations.

7 Resultant field equations

Having calculated in (73) and (77), the Riemann and the ma-
terial curvature tensors into a form that allows us to exe-
cute the main business of the day of deriving (deducing) the
source-coupled and source-free field equations respectively,
we are going to start by writing main field (49) with the de-
coupled Riemann and the material curvature tensors, i.e.:

marble︷                      ︸︸                      ︷
Ŕλ
µσν︸︷︷︸
L I

+ R̀λ
µσν︸︷︷︸

L II

+ Ωλ
µσν︸︷︷︸

L III︸                      ︷︷                      ︸
Rλµσν(Aα)

=

varnished wood︷                      ︸︸                      ︷
T́ λ
µσν︸︷︷︸
R I

+ T̀ λ
µσν︸︷︷︸

R II

+ Q λ
µσν︸︷︷︸

R III︸                      ︷︷                      ︸
T λ
µσν(%)

. (78)

Eq. (78) is the single most important equation of our theory
and it is out of this equation that we are to derive the rest of
the field equations of the theory. The setting up of the said
field equations of the theory we shall do by way of introduc-
tion of the appropriate gauge constraints. If it were us creat-
ing the Universe out of (78), how were we going to proceed to
accomplish this monumental task? Our thinking is that a term
on the left-hand side in (78) has a corresponding term on the
right. Therefore, if our said thinking is reasonable or correct,
then our task to finding the sought-for field equations is sim-
ply to correctly match the left- and right-hand side terms in
(78). If the choice we make turns out to describe our Universe
as we know it, then this choice will somehow be the choice
that has been made in creating the Universe! This should give
us a foothold in seeking answers to some of Einstein’s deep
philosophical questions about the creation of the Universe.

With regard to the creation of the Universe, Einstein is fa-
mously quoted as having said I want to know the mind of God
... whether or not He had a choice in making the Universe
and on a different occasion, as having said When I am judg-
ing a theory, I ask myself whether, if I were God, I would have
arranged the World in such a way. [62]. These are very deep
questions that Einstein was asking about physical and natu-
ral reality. Using Einstein’s words as a source of inspiration,
strength and guidance, we find ourself asking How are we to
construct the resulting field equations from (78)?

It is with great equanimity that we say that we are of
the veritable standpoint that the first term (labelled L I) on
the left-hand side of (78) corresponds to the first term on the
right-hand side (labelled R I); that, the second term on the left
(labelled L II) corresponds to the second term on the right-
hand side (labelled R II); and, likewise, that, the L III term
corresponds to the R III term, i.e.:

Ŕλ
µσν = T́ λ

µσν (a)

R̀λ
µσν = T̀ λ

µσν (b)

Ωλ
µσν = Q λ

µσν (c)

(gauge constraints)

(79)
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Eqs. (79a), (79b) and (79c) are constraints on (78), albeit en-
dogauge constraints of the theory. Shortly in §7.1 and §7.2,
we shall show that (79a) and (79c) are the gravitational sour-
ce-coupled and source-free Maxwell’s field equations [14].
Exploration of (79b) is left for a later paper.

7.1 Source-coupled field equations

As claimed above, we shall now proceed to show that (79a)
is indeed the gravitomagnetic Maxwell-type source-coupled
field equation. To see this, we shall multiply (79a) on both
sides by Aα and thereafter contracting the (α, µ) and (λ, σ)-
indices by setting α = µ = β and λ = σ = δ; so doing, we
obtain:

AβŔδ
βδν = AβT́ δ

βδν . (80)

On the other hand, for AβŔδ
βδν, we have that:

AβŔδ
βδν = Fδ ν,δ , (81)

and this already looks very familiar – is this not the well
known left-hand side of Maxwell’s source-coupledfield equa-
tion [14] – albeit – in the realm of the gravitational phenome-
non? It certainly is.

For AβT́ δ
βδν, we have that:

AβT́ δ
βδν = −2AδJδ,ν − J δ,δAν

= −2Aδ∂δ∂ν% + (�%/2) Aν

= −µ̃Jν + κ2Aν

(82)

where from our foreknowledge and, by way of inference and
inspiration from experience, we have set in (82):

2Aδ∂δ∂ν% = µ̃Jν ,

with µ̃ being a coupling constant that restores dimensional
consistency and Jν is the conserved gravitational four-current
density (or four-momentum density). Thus from the forego-
ing, it follows that Fδ ν,δ = −µ̃Jν. We expect that µ̃ should
embody (represent) Newton’s gravitational constant. For aes-
thetic reasons, we prefer to write this equation Fδ ν,δ = −µ̃Jν
in the form:

∂µFµν = −µ̃Jν + κ2Aν . (83)

The above (83) is Maxwell’s source-coupled field equations
[14], albeit in the present case, these equations are emerg-
ing not in the realm and domain of electrodynamics, but pure
gravitation. This derivation of (83) completes the first part of
the main task of the present paper. In the next section, we
tackle the second part where we shall derive the source-free
gravitomagnetic field equations.

7.2 Source-free field equations

Having derived the source-coupled field (83), we are now go-
ing to deduce (derive) the source-free field equations from

the field (79c) by means of the first Voss-Bianchi identities
(in (50)). To that end, we shall achieve this by conducting a
cyclic permutation of the µσν-indices in (79c), i.e.:

Ωλ
[µσν] = Q λ

[µσν] . (84)

The square-brackets in (84) here and after indicate the cyclic
permutation of the indices for the particular tensor in ques-
tion.

Now for Q λ
[µσν], we already know from (54b) that Q λ

[µσν] ≡

0. For Ωλ
[µσν], a computation of this tensor will yield Ωλ

[µσν] =

AλFµσ,ν + AλFνµ,σ + AλFσν,µ. Therefore, combining this with
(54b) and (84), it follows that:

∂νFµσ + ∂σFνµ + ∂µFσν ≡ 0 . (85)

If anything, the above (85) is indeed Maxwell’s source-free
field equations [14] written in terms of the covariant deriva-
tive, albeit in the present case, this equation is emerging deep
within the full domains of gravitation, i.e. from the pure soils
of geometry. The derivation of (85) technically completes the
main task of the present paper. We surely have shown that one
can derive Maxwell’s equations [14] from the viewpoint of a
Riemann-Weyl geometry standpoint. This must give a strong
leverage and impetus to gravitomagnetism as a legitimate and
plausible fundamental phenomenon lying well within the do-
main and realm of real science that is well worthy of the at-
tention of a knowledge seeking scientific mind.

8 Discussion

For what we wanted to achieve in the present paper, we are of
the view that we have succeeded – i.e. succeeded in demon-
strating that – a legitimate fundamental geometrodynamicjus-
tification of gravitomagnetism can be found from the fertile
soils of Weyl’s [1] beautiful but now thought to be dead and
obsolete theory. We further believe that this justification adds
much greater impetus to the justification one obtains from
say Heras’s [43] insightful and powerful existence theorem,
or from Behera’s [32] interesting theorem that much like the
electromagnetic force, the gravitational force is susceptible
to a four-vector description. Furthermore, we are also con-
fident that what we have presented herein is being presented
for the first time in the scientific literature, hence, these are
new blossoms in the realm of ideas.

In the following subsections (i.e. §8.1 and §8.3), we shall
discuss (in §8.2) rather briefly, the gauge conditions arising
in the present theory and in §8.3, our thoughts regarding a
Quantum Theory of Gravity. No tangible conclusion is drawn
from this paper as this is left for our able and agile reader
to makeup their own mind regarding what has herein been
presented. We are of the view that this paper is clear and
straight forward enough, so much that it should not be diffi-
cult to come to a conclusion as to what this paper really means
regarding gravitomagnetism.
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8.1 Architecture and design of theory

We have used Weyl’s modified theory [1] to give a legal and
fundamental basis for the existence of gravitomagnetism, and
this gravitomagnetic theory can and will be extended in the
next paper to demonstrate a possible unity between gravita-
tion and electricity. Naturally and with justification, one will
(or may) ask the interesting question: What in the present
have we now done differently that no one has done in the past
to this 102 year old theory that suffered a moumental still-
birth under the able hands and agile eyes of Albert Einstein’s
razor sharp intellect whose criticism made sure that Weyl’s
theory [1] failed?

In a nutshell, what we have done in our quest to give
a fundamental geometrodynamic justification of gravitomag-
netism, is to modify Weyl’s [1] supposedly failed geometry
whose endeavour was to bring the gravitational and electro-
magnetic forces into one grand scheme, via the subtle addi-
tion of a conformal scalar leading to the addition of a tensorial
affine connection that is a function of a four-vector field and
have turned Weyl’s [1] scalar into a pseudo-scalar of the sec-
ond kind. Succinctly stated – in just nine major steps – this is
what we have done:

1. The first insight has been to make the Weyl [1] confor-
mal scalar a pseudo-scalar of the second kind and this
allows us to obtain tensorial affinities within the realm
of Weyl’s theory [1].

2. The second insight is to realize that the Riemann met-
ric tensor gµν can be decomposed into a product of a
four-vector Aµ so that, instead of describing the metric
using ten potentials, it is now described by only four
potentials: gµν = AµAν.

3. Third – in a Weyl [1] fashion – via the newly introduced
pseudo-scalar, we added a new non-tensorial affinecon-
nection Q λ

µν (i.e. Γλµν = Γλµν −W λ
µν − Q λ

µν) and demanded
of it to yield for us a resultant affine connection that
is a tensor. Once we have a tensorial affine connec-
tions, it means we now have the tool required to obtain
Einstein’s desired geometry that is such that both the
length and direction of a vector under parallel transport
are preserved.

4. Fourth, the preservation of both the direction and length
of the vector under parallel transport automatically im-
plies that the curvature tensor Rλ

µσν will vanish identi-
cally everywhere, i.e. Rλ

µσν ≡ 0. The equation Rλ
µσν ≡ 0

becomes our theory’s first and main field equation.
5. Fifth – because the affine connections are now tensors,

it is possible to construct for ourself – by way of choice
(gauge constraint) – an effective geometrywhich issuch
that the non-linear terms ΓδµνΓ

λ
δα and ΓλδνΓ

δ
µα in the cur-

vature tensor Rλ
µσν vanish identically. This gauge choi-

ce results in three separate linear curvature tensors ma-
king up the resultant curvature tensor, namely Rλ

µσν,

T λ
µσν, and Q λ

µσν.

6. Sixth – the main field equation Rλ
µσν ≡ 0 is split into

parts as Rλ
µσν = T λ

µσν where Rλ
µσν is the Riemann curva-

ture tensor and T λ
µσν the material curvature tensor.

7. Seventh – a set of gauge conditions (constraints) are
then deliberately introduced – i.e. conditions which,
when used in conjunction with the source-coupled field
equation Rλ

µσν = T λ
µσν, yield for us the desired source-

coupled Maxwell Geometrodymanic Equations [14].
8. Ante-penultimate – we split each of the curvature ten-

sors Rλ
µσν and T λ

µσν into three parts each of which are
also tensors.

9. Penultimate – we deduce the resultant field equations
by relating each of the three tensors making up the
Riemann curvature tensor Rλ

µσν to the three parts mak-
ing up the material curvature tensor T λ

µσν, wherefrom
we obtain the first and second Maxwell’s field equa-
tions [14], albeit in the realm of gravitomagnetism.

The above nine steps are an executive summary of the road
leading to the theory here laid down. There is not much to
say any further regarding the construction and architecture
of the theory, except that we have given gravitomagnetism
a fundamental geometric justification that we hope will lead
researchers to reconsider gravitomagnetism as a fundamental
phenomenon to be considered separately and independently
as a physical phenomenon.

8.2 Gauge conditions

In total, the theory has required five gauge conditions for its
architecture and design. These gauge conditions are presen-
ted in (37), (44), (79a), (79b), and (79c). Of these gauge con-
ditions, (44) is the only natural gauge condition, while the rest
are gauge constraints. The solo natural gauge is necessary in
order that on a global level, the theory meets our most sought
for requirement – of a geometry whose vectors during par-
allel transport in spacetime will have both their lengths and
angles remain invariant. The gauge constraints (37), (79a),
(79b), and (79c) have been instituted (imposed) so that we
obtain a theory whose resulting equations have the form that
we desire or that we are used to – which in this case, is the
Maxwell form [14].

8.3 Quantum theory of gravity

Lastly, as our final word, we will briefly touch on the long
sought – albeit elusive and contentious – dream of attaining a
Quantum Theory of Gravity (QTG). Given the obvious sim-
ilarities not only in the formulae of Sir Isaac Newton’s uni-
versal law of gravitation Fg = −GMgmg/r2 and Coulomb’s
electrostatic law Fe = Q q/4πεr2, but in the two physical
phenomenon themselves, we can learn one or two things from
QED if we are to one day find a quantum mechanical descrip-
tion of the gravitational field.
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For example, if we are to accept the thesis presented here-
in – this would mean that, like electricity, gravity is repre-
sented by a four-vector field. From this deduction, logically
and intuitively, it would appear that the same method(s) used
to quantize the electrodynamic phenomenon – can (and must)
be applied somehow to the much sought for quantization pro-
gram of the gravitational field. We know very well that QED
is built on the fundamental soils of three very beautiful equa-
tions, namely the Dirac equation [63, 64] and Maxwell’s two
equations of electrodynamics [14], i.e.:

ı~γµ∂
µψ = m0cψ (a)

∂µFµν = µ0Jν (b)

∂λFµν + ∂νFλµ + ∂µFνλ = 0 (c)

(86)

where (86a) is the Dirac equation [63, 64] and (86b & c)
are Maxwell’s two equations of electrodynamics [14] respec-
tively. In the Dirac equation (86a), γµ, m0, and ψ are the usual
four 4 × 4 Dirac matrices, the rest mass of the particle, and
the four-component Dirac wavefunction, respectively.

Thus, in much the same manner, the gravitational field
might be quantizable via the quantization of the gravitational
four-vector field Aµ, in much the same way the electromag-
netic four-vector Aµ has been quantized in QED under the
scheme of the three equations given in (86). In order for
this, the Dirac equation will have to be replaced by its curved
spacetime equivalent. In [65], we did propose such a curved
spacetime version of the Dirac equation, namely ı~γ(a)

µ Aµ∂
µψ

= m0cψ, and in our search for a QTG, we shall take this
equation as the appropriate curved spacetime Dirac equation.
Thus, we propose that the three equations to be used in the
quantization program are:

ı~γ(a)
µ Aµ∂

µψ = m0cψ (a)

∂µFµν = −µ̃Jν (b)

∂νFµσ + ∂σFνµ + ∂µFσν ≡ 0 . (c)

(87)

At the time when the curved spacetime Dirac equation (87a)
was proposed, we where not sure how to identify the grav-
itational four-vector field Aµ because we had not conceived
of the gravitational field as capable of being described by a
four-vector. But after the fundamental work of Behera [32]
and Heras [43], and what we have presented herein, we are
more than convinced that the gravitational field must submit
to a four-vector description as suggested herein and e.g. by
Heras [43], Behera [32], Heaviside [29,30] and Maxwell [14].

8.4 In closing

In closing, allow us to say that as already stated a number
of times, the purpose of the present paper has been to show
that gravitomagnetism can be given a geometric description
gµν = e2φgµν on spacetime in exactly the same manner as Ein-
stein gave gravity a geometric description on spacetime via

the metric tensor gµν. For fear of digression and loss of focus,
we have avoided going deeper in the many areas that this pa-
per can possibly touch. We shall be making follow-up work
which will dwell on these matters. We are very much aware
of these many areas and we have not even mentioned some of
them but silently passed as though we are not aware of them
– this has been done intentionally. Further, for the same rea-
sons, we have not done a serious comparative analysis of the
present ideas with similar attempts in the literature. We must
say that, the present paper is already an unavoidably lengthy
one, so mush so that there really is no need to burden you
our reader with more material. This can efficiently be done in
separate papers in the future.
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Can Nano-Materials Push Off the Vacuum?
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The theory of quantised inertia (QI), which predicts galaxy rotation without dark matter,
also predicts that electromagnetic energy input into an asymmetric cavity perceives a
gradient in the quantum vacuum in the cavity producing a force on that cavity. Here it is
shown that if the cavity is less than 129 nm in scale, then no input power is needed and
the predicted thrust can be comparable to gravity. Arrays of these nano-cavities could
produce a self-thrusting material.

1 Introduction

Many astrophysical observations show that stars at the outer
edges of galaxies orbit far too fast to be gravitationally bound
to the galaxy [1, 2] and an identical phenomenon is observed
for globular clusters [3] and wide binaries [4]. On a much
smaller scale, some laboratory experiments have shown that
asymmetric metal cavities of various types with strong elec-
tromagnetic fields resonating within them (emdrives) show an
unexpected thrust towards their narrower ends [5, 6].

All these phenomena can be predicted by a theory called
quantised inertia, which assumes that the inertial force arises
because the Rindler horizon that objects see when they ac-
celerate damps the excited zero point field (Unruh radiation)
behind them creating an imbalance which pushes them back
against their original acceleration [7, 8]. This model success-
fully predicts galaxy and wide binary rotations without any
adjustment [9,10]. Quantised inertia also predicts that an arti-
ficial horizon can be produced when high acceleration matter
or electromagnetic radiation is confined inside an asymmet-
ric cavity, producing a new kind of thrust [11, 12] that may
already have been seen in the emdrive. It was pointed out
by [13] that using light and supermirrors to contain it, might
enhance this force.

It is shown here that QI also predicts that if the asymmet-
ric metal cavities are as small as 129 nm then a thrust compa-
rable to gravity can be obtained even from the unexcited zero
point field. This implies that if a material was constructed
with arrays of asymmetric nano-cavities, then the force would
be enough to levitate that material.

2 Method & result

We start with Heisenberg’s uncertainty principle for a single
photon inside a double-cavity that has a wide part and a nar-
row part (see Figure 1). A photon oscillates repeatedly along
a distance d between the wide and narrow cavities as shown
by the arrow. The uncertainty principle states that the uncer-
tainty in momentum (∆p) and position (∆x) of the photon in
each cavity is

∆p∆x ≥ ~/2 . (1)

The uncertainty in position is assumed, in quantised iner-
tia, to be the size of the cavity the photon is in. [14,15] pointed

Fig. 1: The asymmetrical metal cavity. A photon moves back and
forth along the dashed arrow.

out that Heisenberg’s original form for the uncertainty prin-
ciple intended an equal sign, not an inequality so that in the
wide cavity we can write

∆pw =
~

2L
(2)

and for the narrow cavity

∆pn =
~

2l
. (3)

The force is the change of momentum with time

F =
∆p
∆t

=
c(∆pn − ∆pw)

d
=

~c

2
(

L
2 + l

2

) (
1
l
−

1
L

)
. (4)

If we assume that the width of the smaller cavity is half
that of the larger (l = L/2) then

F = ma =
2~c
3L2 . (5)

The mass of the cavity, assuming it is two hollow spheres,
is m = 5πL2ρδ/4 where ρ is the density of the metal walls and
δ is their thickness. So

L2 =
2~c
3ma

=
8~c

15πL2ρδa
. (6)
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Rearranging, we can now calculate the size of cavity at
which the energy solely from the zero point field (~) is enough
to produce acceleration a

L =
4

√
8~c

15πρδa
. (7)

Assuming that the density of the metal is 2000 kg/m3, its
thickness is 1 mm and the acceleration to be overcome is that
of gravity at the Earth’s surface, g = 9.8 m/s2, then we get

L = 129 nm . (8)

The implication is that if we build an asymmetric metal
cavity such as that shown in Figure 1, with its narrow end up-
wards and on a scale of 129 nm or less, then it should levitate
simply from the already-present zero point field without any
input power.

3 Discussion

It follows from the above that if a material can be manu-
factured that is composed of an array of asymmetric nano-
structures of size 129 nm or less then the material will levitate
without input power.

One difficulty will be that, on the nanoscales considered
here, other thermal or plasmonic effects will become impor-
tant so the effectiveness of this approach will be dependent on
these other effects cancelling out.

4 Conclusions

Quantised inertia predicts that asymmetric metal cavities
make a gradient in the quantum vacuum, causing thrust.

The smaller the cavity, the larger the predicted thrust. At
scales of 129 nm, the thrust equals gravity at the Earth’s sur-
face.

If a material can be constructed with arrays of such asym-
metric nano-cavities then it should levitate without input
power.
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In this article we propose a new approach to quantum measurement in reference to the
stroboscopic tomography. Generally, in the stroboscopic approach it is assumed that
the information about the quantum system is encoded in the mean values of certain
hermitian operators Q1, ...,Qr and each of them can be measured more than once. The
main goal of the stroboscopic tomography is to determine under which conditions one is
able to reconstruct the initial density matrix ρ(0) on the basis of the measurement results
〈Qi〉t j . In this paper we propose to treat every complex matrix as a measurable operator.
This generalized approach to quantum measurement may bring some improvement into
the models of stroboscopic tomography.

1 Introduction

In this paper by H we shall denote the Hilbert space and we
shall assume that dimH = n < ∞. By B(H) we shall de-
note the complex vector space of all bounded linear opera-
tors in H . The space B(H) is isomorphic with the space of
all complex matrices that shall be represented by Mn(C). Fi-
nally, B∗(H) shall refer to the real vector space of all hermi-
tian (self-adjoint) operators on H . The elements of B∗(H)
shall be called observables.

The term quantum state tomography refers to a wide va-
riety of methods and approaches which aim to reconstruct the
accurate representation of a quantum system by performing
a series a measurements. Among many different approaches
to quantum tomography, one can especially mention the so-
called static model of tomography, which requires n2−1 mea-
surements of different observables taken at time instant t = 0
(see more in [1–3]). A paper published in 2011 initiated an-
other approach to quantum tomography which is based on
weak measurement. The paper revealed that the wave func-
tion of a pure state can be measured in a direct way [4]. Fur-
ther papers proved that this approach can be generalized also
for mixed state identification [5].

In this paper we follow yet another approach to quantum
tomography – the so-called stroboscopic tomography which
originated in 1983 in the article [6]. Subsequently, the ap-
proach was developed in other papers, such as [7–9]. The
assumption that lies at the very foundation of this method
claims that the evolution of an open quantum system can be
expressed by a master equation of the form

ρ̇(t) = L[ρ(t)], (1)

where the operator L is called the generator of evolution and
its most general form have been introduced in [10]. In or-
der to determine the initial density matrix ρ(0) one assumes
to have a set of identically prepared quantum systems which
evolve according to the master equation with the generator L.
Each system can be measured only once, because any mea-
surement, generally, influences the state.

The other underlying assumption connected with the stro-
boscopic approach is that the knowledge about the quantum
system is provided by mean values of certain observables
{Q1, ...,Qr} (obviously Q∗i = Qi) such that r < n2 − 1. These
mean values are mathematically expressed as

〈Qi〉t = Tr(Qi ρ(t)) (2)

and are assumed to be achievable from an experiment. If we
additionally assume that the knowledge about the evolution
enables us to perform measurements at different time instants
t1, ..., tg, we get from an experiment a matrix of data [〈Qi〉t j ],
where i = 1, ..., r and j = 1, ..., g. The fundamental question
of the stroboscopic tomography that one asks is: whether the
matrix of experimental data is sufficient to reconstruct the ini-
tial density matrix ρ(0). Other problems relate to the minimal
number of observables and time instants, the properties of the
observables and the choice of time instants. In general the
conditions under which it is possible to reconstruct the initial
state have been determined and can be found in [6–8].

Compared with the static model of tomography, the stro-
boscopic approach makes it possible to decrease significantly
the number of different observables that are necessary to per-
form quantum state tomography. From the experimental point
of view, it means that in the static model one needs to prepare
n2−1 different experimental systems (e.g. for dimH = 4 one
would need to measure 15 different quantities), which seems
rather unrealistic. Therefore, the stroboscopic approach ap-
pears to have an advantage over the static model as it aims to
reduce the number of distinct observables.

2 Generalized observables and measurement results

According to one of the most fundamental concepts of quan-
tum mechanics, to every physical quantity we can assign a
hermitian operator which is called an observable. Thus, when
talking about measurements in the context of the stroboscopic
tomography, we consider mean values of certain hermitian
operators [6]. In general, any hermitian operator can be de-
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composed according to the spectral theorem:

Q =
∑

i

λiPi. (3)

where Pi is the projector onto the eigenspace of Q with the
eigenvalue λi [11]. Physically speaking, the possible results
of measurement correspond to the eigenvalues of Q, whereas
the probability of getting the result λi (upon measuring the
state ρ) can be expressed as:

pi = Tr(Pi ρ). (4)

Finally, we can compute the expectation value of Q as:

〈Q〉 =
∑

i

λi pi = Tr(Q ρ), (5)

which gives the famous formula for the mean value of any
observable.

In other words, any observable is associated with a pro-
jective measurement, which stems from the spectral theorem.
The main goal of this section is to prove that this approach
to measurement can be generalized in such a way that any
complex matrix A ∈ Mn(C) can be considered a measurable
operator.

We shall formulate and employ the following theorem.

Theorem 1. (Hermitian decomposition of a complex matrix)
For any matrix A ∈ Mn(C) there exist two matrices Q, R ∈
B∗(H) such that the matrix A can be decomposed as

A = Q + i R. (6)

Proof. Let us first denote A = [ai j] and since in general ai j ∈

C we can put
ai j = Re ai j + i Im ai j. (7)

Moreover we can denote Q = [qi j] and R = [ri j]. Then we
shall define the entries of the matrices Q and R in the way:

qi j :=
Re ai j + Re a ji

2
+ i

Im ai j − Im a ji

2
, (8)

ri j :=
Im ai j + Im a ji

2
+ i

Re a ji − Re ai j

2
. (9)

One can easily notice that qi j = q ji and ri j = r ji. Therefore
Q,R ∈ B∗(H).

Furthermore, one can check that

qi j + iri j =
Re ai j + Re a ji

2
+ i

Im ai j − Im a ji

2
+

+ i
Im ai j + Im a ji

2
+

Re ai j − Re a ji

2
= ai j,

(10)

which implies that
A = Q + i R. (11)

�

The above theorem states that every complex matrix A ∈
Mn(C) can be uniquely decomposed into two hermitian ma-
trices. In other words, every complex matrix can be regarded
as a pair of observables (hermitian matrices), i.e.

A→ (Q1,Q2), where Q1,Q2 ∈ B∗(H). (12)

Since in general any observable is considered measurable,
therefore, any complex matrix can also be considered a mea-
surable operator.

In this paper it has been proven that for any A ∈ Mn(C)
there exist two observables Q1,Q2 ∈ B∗(H) such that

A = Q1 + i Q2. (13)

If we generalize the idea of quantum measurement, we
can define the mean value of any operator A ∈ Mn measured
upon a quantum system characterized by a density matrix
ρ(t). Such a quantity, denoted by 〈A〉t, shall be defined in
the following way:

〈A〉t := Tr[Aρ(t)] = Tr
[
(Q1 + i Q2)ρ(t)

]
. (14)

Taking into account the fact that trace is linear, one obtains

〈A〉t = Tr[Q1ρ(t)] + i Tr[Q2ρ(t)], (15)

which can be equivalently presented as

〈A〉t = 〈Q1〉t + i 〈Q2〉t. (16)

One can observe that if we generalize the idea of quantum
measurement in such a way that we treat any complex matrix
A ∈ Mn(C) as a measurable operator, the mean value of A is
a complex number such that its real and imaginary parts are
mean values of the observables Q1,Q2 which appear in the
hermitian decomposition of A. Therefore, the measurement
of any complex operator A can be understood as the mea-
surement of two physical quantities that are mathematically
represented by the hermitian matrices Q1,Q2.

3 Connection with the stroboscopic tomography

When considering problems in the stroboscopic tomography,
one needs to bear in mind the necessary condition that the
set of observables Q1,Q2, ...,Qr has to satisfy so that an open
quantum system with dynamics given by (1) will be recon-
structible.

Theorem 2. An open quantum system with evolution given by
Eq. 1 is (Q1, ...Qr)-reconstructible if and only if the operators
Qi satisfy the condition [6, 7]

r⊕
i=0

Kµ(L,Qi) = B∗(H), (17)

where
⊕

refers to the Minkowski sum, µ is the degree of the
minimal polynomial of L and Kµ(L,Qi) denotes the Krylov
subspace which standard definition reads:

Kµ(L,Qi) := Span{Qi,L
∗Qi, (L∗)2Qi, ..., (L∗)µ−1Qi}. (18)
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In reference to this condition for observability of a quan-
tum system we can propose the following theorem.

Theorem 3. Assume that the set of hermitian matrices de-
noted by {λ1, λ2, ..., λn2 } constitutes a basis in the space of all
hermitian operators B∗(H), where n = dimH . Then they
also constitute a basis in the space of all linear operators
Mn(C).

Proof. Taking into account the assumption, one can write:

∀Q∈B∗(H) ∃α1,...,αn2∈R Q =

n2∑
k=1

αkλk. (19)

Then from the theorem on hermitian decomposition of a com-
plex matrix it follows that ∀A∈Mn(C) ∃Q,R∈B∗(H) such that the
matrix A can be decomposed as

A = Q + i R. (20)

Assuming that Q has such decomposition as in (19) and tak-
ing R in the analogous form:

R =

n2∑
k=1

βkλk, βk ∈ R, (21)

matrix A can be represented as

A =

n2∑
k=1

αkλk + i

 n2∑
k=1

βkλk

 , (22)

which can be transformed into the form

A =

n2∑
k=1

(αk + iβl) λk. (23)

Finally, the matrix A can be decomposed as

A =

n2∑
k=1

zkλk, (24)

where zk ∈ C and zk = αk + iβk.
From (24) one can easily draw the conclusion that the set of
matrices {λ1, λ2, ..., λn2 } is a basis inMN(C). �

The link between the above theorem and the stroboscopic
tomography is that in (17), which expresses the necessary
condition for observability, on the right hand side you can
put either B∗(H) or B(H). On the basis of theorem 3 one can
conclude that if certain operators span one of these spaces,
they also have to span the other.

4 Summary

In this paper it has been proved that any complex matrix A ∈
Mn(C) can be uniquely determined by two hermitian matrices

(i.e. observables). In general, mean values of hermitian ma-
trices can be obtained from an experiment (based on projec-
tive measurement). Thus, from this observation one can con-
clude that any complex matrix can be regarded as a measur-
able operator. The measurement of a complex matrix should
be understood as the measurement of the mean values of two
observables which determine the complex operator. The mea-
surement result of a complex matrix is then a complex num-
ber which real and imaginary parts are obtained from an ex-
periment. Further research is planned to investigate whether
the generalized approach to measurable operators can im-
prove the models of the stroboscopic tomography.
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In this paper, we present physical calculations to support a mechanism of slip displace-
ments of the lithosphere in the plate tectonics model of the earth sciences. In particular,
for a lithospheric slip displacement to occur, a force must be applied to the lithospheric
plate to overcome the force of static friction that is holding it in place on top of the as-
thenosphere. The magnitude of the required applied force can be generated by asteroid
impact and is found to depend on the mass of the plate, the mass, velocity and angle of
incidence of the asteroid, and the duration of the momentum transfer. The distance that
is covered by the plate as a result of the lithospheric slip displacement is calculated and
provides an explanation for observed sudden changes in direction and/or speed of plate
motions. The model calculations presented in this paper provide a framework to analyze
lithospheric slip displacements in plate tectonics resulting from asteroid impacts.

1 Introduction

In this paper, we present physical calculations to support a
mechanism of slip displacements of the lithosphere in the
plate tectonics model of the earth sciences [1–3]. The litho-
sphere consists of the Earth’s crust of thickness ∼10 km and
the upper part of the mantle composed of rigid rocks of av-
erage density ρ ∼ 3.3 gm/cm3, with overall average thick-
ness ∼100 km [3] [4, p. 76], divided into the tectonic plates
covering the surface of the Earth. It rests on the upper part
of the asthenosphere of average density ρ ∼ 3.1 gm/cm3 [4,
p. 70], which is plastic and subject to viscous flows due to
the nature of the rocks and the heat and densities involved.
The asthenosphere becomes more rigid and stronger with in-
creasing depth in the mantle, with average density ρ ∼ 3.4 −
4.4 gm/cm3. The earth’s crust is differentiated from the litho-
spheric part of the mantle by the Mohorovic̆ić, usually re-
ferred to as the Moho, discontinuity. See Fig. 1.

Given the structure of the lithosphere and the plastic and
viscous nature of the upper part of the asthenosphere (low-
viscosity zone LVZ [5, pp. 11,181]), it is quite conceivable
that the lithosphere could move over the asthenosphere by a
slip displacement movement, given the appropriate applied
force to initiate the process. We calculate the applied force
that would be required to initiate this process, and the type
and nature of displacement movements that could be gener-
ated by such an applied force.

2 Lithospheric slip displacements

As currently understood, plate tectonics is a convective pro-
cess, thermally driven by colder lithospheric slabs sinking
into the interior of the hotter mantle at subduction zones [4,
p. 11]. Continental drift and plate tectonics are considered
to be sufficient proof of convection in the upper mantle [6,
pp. 207–211].

However, as pointed out by Price [4, p. 63], “the models
... are completely unusable to explain the abrupt changes of
rate and direction of plate motion which are, from time to

Fig. 1: Cross-section of the layers of the Earth’s upper mantle and
crust (not to scale). Force model for the lithospheric slip displace-
ment.

time, exhibited in the geological record”. As stated in [7]
quoted in Price [4, p. 191], “Unfortunately, we cannot repro-
duce the toroidal/poloidal partitioning ratios observed from
the Cenozoic, nor do our models explain apparently sudden
plate motion changes that define stage boundaries.” [empha-
sis in Price]. A process of lithospheric slip displacement is
needed to explain such sudden plate motions.

2.1 The force model

In this and subsequent sections, we seek to understand the
lithospheric slip displacement process by performing order-
of-magnitude simplified calculations. This first portion is a
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simple force model (see Fig. 1).
We consider a tectonic plate of mass M resting on the as-

thenosphere with a static coefficient of friction µs. The force
of static friction between the plate and the asthenosphere is
then given by Fs = −µsN, where the normal force N is given
by N = Mg where g is the acceleration due to gravity. Com-
bining these quantities, the force of static friction Fs is then
given by

Fs = −µs Mg . (1)

For the lithospheric slip displacement to occur, a force Fa

must be applied to the plate to overcome the force of static
friction that is holding it in place. This applied force must be
greater than the force of static friction Fa > Fs, and substitut-
ing from (1), we obtain the slip condition

Fa > µs Mg . (2)

We consider a sample calculation for the North Ameri-
can plate as an order-of-magnitude estimate of the forces in-
volved. The area of the North American plate is given by
58.8×106 km2 [4, p. 7]. For an average thickness ∼100 km and
an average density ρ ∼ 3.3 gm/cm3 (see section 1), the mass
of the North American plate is given by M = 1.8 × 1022 kg.
Using these values and an estimated static coefficient of fric-
tion of 0.28 (greasy nickel) [8], the slip condition (2) then
becomes

Fa > 5 × 1022 N , (3)

where N is the Newton unit of force. This estimated applied
force slip condition could be higher in the case of a higher
static coefficient of friction, but it would likely not exceed a
factor of two higher (i.e. Fa > 1023 N). For example, the
static coefficient of friction between concrete and silty clay is
estimated at 0.30-0.35 in [9]. This applied force required for
a lithospheric slip displacement to occur is very significant.

The applied force provides the impulse to set the plate in
motion. Once the plate is set in motion, the only force that is
applicable is the force of kinetic friction between the plate and
the asthenosphere which is slowing down the plate’s move-
ment. This force is given by Fk = −µkN, where the normal
force N is again given by N = Mg. The kinetic coefficient of
friction µk is smaller than the static coefficient of friction µs.
Combining these quantities, the force of kinetic friction Fk is
then given by

Fk = −µk Mg , (4)

which decelerates the plate at the rate a = −µk g. For the
example previously considered, using an estimated kinetic
coefficient of friction of 0.12 (greasy nickel) [8], the decel-
eration is given by a = −1.2 m s−2. The deceleration could
be greater in the case of a higher kinetic coefficient of fric-
tion, but it would likely not exceed a factor of two higher
(i.e. a = −2.4 m s−2). For example, the sliding (kinetic) coef-
ficient of friction between cement and wet clay is estimated
at 0.2 in [8].

2.2 The asteroid impact model

As we have seen in (3), the applied force required for a litho-
spheric slip displacement to occur is very significant. This
magnitude of force would only be available in a collision pro-
cess, such as the impact of an asteroid or comet with the plate.
We use the term asteroid impact in a generic fashion to rep-
resent both asteroid and comet impacts. Neville Price has
considered the effect of major impacts on plate motion in his
book [4, see chapters 6–8], but does not consider the litho-
spheric slip displacement introduced in this paper.

We consider an asteroid impact process which is known
to be a low, but greater-than-zero probability event [10, 11].
We assume that the asteroid impacts the plate at an angle of
incidence θ with respect to the surface of the plate. For a per-
pendicular angle of incidence θ = 90o, the impact will cause
damage to the crust/lithosphere, with no slip displacement.

In addition, we consider an asteroid of mass m and speed
v with respect to the plate which is assumed to initially be at
rest. Then the asteroid’s momentum in the plate’s local plane
is given by

p = mv cos θ . (5)

When the asteroid collides with the plate, the collision’s ap-
plied force impulse is given by

Fa =
∆p
∆t

(6)

where ∆p = mv cos θ is the change in momentum of the plate
assuming it is initially at rest and ∆t = ∆tp is the time interval
for the momentum transfer, which is much shorter than ∆tc,
the duration of the collision. Thus

Fa =
mv cos θ

∆tp
. (7)

Combining (2) and this equation, the slip condition for a plate
slip displacement to occur in the direction of the collision as
a result of the applied force overcoming the force of static
friction becomes

mv cos θ
∆tp

> µs Mg . (8)

The variables on the L.H.S. are dependent on the characteris-
tics of the asteroid and the collision, while those on the R.H.S.
are dependent on the plate impacted.

We return to our sample calculation for the North Ameri-
can plate of section 2.1 to obtain an order-of-magnitude esti-
mate of the effect under consideration. We consider a collid-
ing asteroid of diameter d ∼ 20 km, mass m ∼ 2 × 1016 kg,
v ∼ 30 km/s, and use an angle of incidence θ = 45o [12, 13].
Then substituting into (8) and using (3), we obtain slip con-
dition

4 × 1020

∆tp
> 5 × 1022 N , (9)
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which is dependent on the momentum transfer time. We con-
sider three momentum transfer times: 1 s, 1 ms and 1 µs:

for ∆tp = 1 s, 4 × 1020 N ≯ 5 × 1022 N ,

for ∆tp = 1 ms, 4 × 1023 N > 5 × 1022 N ,

for ∆tp = 1 µs, 4 × 1026 N > 5 × 1022 N .

(10)

Price [4, p. 171] notes that two stress waves are generated at
the point of impact, one in the asteroid rocks and one in the
plate rocks. These he estimates to each propagate at about
8 km/s, which points to a momentum transfer time in the ms
range.

The slip condition is satisfied for the two shorter collision
times (1 ms and 1 µs), but not for the longer one (1 s). Thus
we find that lithospheric slip displacements are possible in
plate tectonics under certain asteroid impact conditions. The-
se are found to depend on the mass of the plate, the mass, ve-
locity and angle of incidence of the asteroid, and the duration
of the momentum transfer. The probability of a lithospheric
slip displacement would be much higher for larger asteroids.
We now investigate some of the details of the resulting mo-
tion of lithospheric slip displacements under asteroid impact
conditions.

3 The conservation of energy model

In the previous section, we have considered the force model
underlying lithospheric slip displacements in plate tectonics.
In this section, we examine the motions resulting from the
law of conservation of energy.

Before the collision, the energy of the plate-asteroid sys-
tem, assuming the plate is at rest, is given by the kinetic en-
ergy of the incoming asteroid

Ei =
1
2

mv2 , (11)

where the variables are as defined previously. The collision
is completely inelastic and the kinetic energy of the colliding
body is transferred to the plate. In addition, energy is lost in
the fracas, cratering and deformation of the plate as a result
of the collision. After the collision, the energy of the plate-
asteroid system is given by

E f =
1
2

(M + m) V2 + Erel , (12)

where m � M, V is the velocity of the plate after the colli-
sion, and Erel is the non-kinetic energy released in the colli-
sion. It should be noted that the slip of the plate as a result of
the collision will reduce the non-kinetic energy Erel released
in the collision as the plate will yield to the asteroid and its
motion will absorb a proportion of the collision energy.

To simplify our calculations, from the conservation of en-
ergy equation Ei = E f , we write

1
2

(M + m) V2 =
1
2
ε mv2 , (13)

Fig. 2: Figure 6.1 from Price [4, p. 196], caption: “Tracks related
to four known impact structures. Examples a, b and c are of cer-
tain impacts. (a) is that for the Popigai crater, diameter 100 km and
age 34.6 Ma. (b) is that of Chicxulub, diameter about 200 km and
age 66.25 Ma. (c) is that of Manicouagan, diameter 100 km and age
208 Ma. (d) is for a ‘near certain’ CNCF [Central Nevada Circular
Feature] impact, diameter about 220 km and date 364.8 Ma.” Note
the significant change in speed of the plate in example (c) after the
change in direction.

where ε ≤ 1 is the proportion of the initial energy transformed
into kinetic energy of the plate, with the rest released as non-
kinetic energy. Solving for V , we obtain

V =

√
ε

m
M
v (14)

where we have neglected m in the term (M + m).
We wish to calculate the distance that will be covered

by the plate as a result of the lithospheric slip displacement.
From (4) of the force model of section 2.1, we know that the
plate will be subject to a constant deceleration a = −µk g. We
can thus use the dynamic equation

V2
f = V2

i + 2as (15)

where Vi is given by (14) and V f = 0 when the plate stops
moving. Solving for the distance s, we obtain

s =
ε

2 µkg

m
M
v2 . (16)

Using the values used in the sample calculation for the
North American plate of section 2.1 and ε = 1 implying that
most of the energy is available as kinetic energy, we get an
initial plate velocity Vi = 32 m/s from (14) and a lithospheric
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slip displacement s = 420 m from (16). For ε = 0.5 imply-
ing that 50% of the collision energy is available as kinetic
energy, we get an initial plate velocity Vi = 22 m/s from (14)
and a lithospheric slip displacement s = 210 m from (16).
These values would be evident in the analysis of tectonic plate
movements in the case of observed sudden changes in direc-
tion and/or speed of plate motions. In Fig. 2, we give exam-
ples from Price [4, Figure 6.1, p. 196] of plate tracks likely
caused by lithospheric slip displacements resulting from as-
teroid impacts.

4 Discussion and conclusion

In this paper, we have considered simple models for order-
of-magnitude proof-of-concept model calculations for litho-
spheric slip displacements in plate tectonics. We have ob-
tained physically realistic results that provide an explanation
for the observations:
• For a lithospheric slip displacement to occur, a force Fa

must be applied to the lithospheric plate to overcome
the force of static friction Fs that is holding it in place
on top of the asthenosphere: Fa > Fs = µs Mg.
• The magnitude of the required applied force Fa can be

generated in asteroid impacts. Lithospheric slip dis-
placements are then possible under the following slip
condition: mv cos θ/∆tp > µs Mg. The asteroid impact
condition is found to depend on the mass of the plate,
the mass, velocity and angle of incidence of the aster-
oid, and the duration of the momentum transfer.
• The distance s that is covered by the plate as a re-

sult of the lithospheric slip displacement is given by
s = εmv2/ 2 µkgM, under the action of a constant de-
celeration a = −µk g, which explains observed sudden
changes in direction and/or speed of plate motions as
seen in Fig. 2.

The model calculations presented in this paper provide
proof-of-concept evidence for lithospheric slip displacements
in plate tectonics resulting from asteroid impacts. The model
depends on many variables including the plates, asteroid and
impact involved, and provides a framework to analyze such
problems.

Many simplifications have been made that can lead to
inaccuracies and complications, such as irregularities of the
lithosphere and asthenosphere impacting the friction force,
the proportion of collision energy being lost in the inelastic
collisional process and not transformed into kinetic energy,
etc. In addition, subsequent plate collisions resulting from
the initial lithospheric slip displacement have to be analyzed
for individual event conditions. Subsequent high-speed plate
collisions could be a contributing factor to orogeny events re-
sulting from violent plate collisions.

It should be noted that residual plate speeds, believed to
be generated by mantle convection, are in the cm/annum ran-
ge [4, p. 16]. Plates can thus be initially taken to be at rest in

Fig. 3: Figure 6.7 from Price [4, p. 202], caption: “(a) Track of
’Bombay’ over the period 72-60 Ma. It can be inferred from the dis-
tances between the points representing specific times that there was
an abrupt change in velocity of the plate at about 67 Ma. (b) A de-
tail of the track shown in (a) reveals that the velocity of plate motion
doubled in a period which is assumed to be about 5000 years.” There
is an error in the units of the reported plate motion (cm/s instead of
the correct cm/a) in the insert in (b).

the calculations in this paper. As Price [4, Figure 6.1, p. 196]
notes, plate speed is changed along with direction in impact
events. For example, he notes that the Manicouagan impact
event (item (c) in Fig. 2) sped up the plate speed by a factor
of 4 (in cm/annum), while for the others, the changes were
-4-5% for item (a), 5-6% for item (b) and 11% for item (d).

The process of lithospheric slip displacement proposed
in this paper would lead to a rapid change in plate direction
and speed which would be followed by a change in residual
plate speed in the cm/annum range, likely arising from the
follow-on plate collisions that occur following a lithospheric
slip displacement. The change in direction and the change
in speed depend on the particulars of the impact event and
cannot be easily calculated, requiring a detailed analysis of
the particular impact event of interest.

Price, using the Atlas Version 3.3 software system [4,
p. 192] to analyze plate track changes, has studied the Indian
Deccan Traps geological structure that he attributes to a ma-
jor impact event at 67.23 Ma which resulted in a change in
plate direction and speed from 8.8 cm/a to 17.6 cm/a, to try
to better understand the timeframe involved for the change
in plate speed. In Fig. 3, we show the figure from Price [4,
Figure 6.7, p. 202] in which he narrowed down the interval
of plate speed change to less than 5 000 years (as shown in
Fig. 3b). As he mentions, the rise-time would likely follow
the S-curve shown in the insert in Fig. 3b, hence over a time
interval shorter than 5 000 years. In his analysis, he attributes
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a time for acceleration and for deceleration before the plate
settles in its new residual plate speed (the short horizontal
portions before and after the vertical portion of the S-curve
shown in the insert in Fig. 3b).

The change in plate direction and speed is thus extremely
short in geologic time. The model suggested in this paper
shows that the time duration of the lithospheric slip displace-
ment would indeed be very short both in geologic and in ac-
tual event time. This model provides an explanation for the
abrupt changes of rate and direction of plate motion observed
in the geological record. It provides a physical and mathemat-
ical framework for the analysis of lithospheric slip displace-
ments in plate tectonics.

Received on July 7, 2020
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In this article, we propose a generalized model of dynamic of extended pulsating walk-
ing droplets. In the first section, we provide a brief overview of the open problems of
walking droplets. In the second section, we analyze some critical issues of the general
stroboscopic models. In the third section, we elaborate our proposal of a generalized
model of pulsating droplets. Finally, we suggest a link between walking droplets dy-
namic and the acoustic gravity wave induced on the surface of the vibrating bath.

1 Open problems of walking droplets

In the last fifteen years, the classical study of hydrodynamical
Faraday waves has attracted great renewed interest since the
discovery of walking droplets and the more general discovery
of hydrodynamical pilot wave models [1,2]. Notwithstanding
that many papers have cleared and rationalized a lot of phe-
nomena with similarities to quantum mechanics (wave/parti-
cle duality, discrete orbits, tunnelling effect, statistical prop-
erties, etc [3, 4, 6, 7]), we propose that something is missing
in the general approach to these issues. For example, as far as
the authors are aware, there are no papers which explore an
hydrodynamic analogue of the Planck law or of the de Broglie
hypothesis or an analogue of the Born statistical interpreta-
tion of the wavefunction.

In particular, we propose that the role of volume pulsa-
tions and bath deformation may be caused by the impact of
the droplet and its influence on the dynamic and conservation
of the momentum of the global systems should be explored.

From our point of view, the problem of defining the total
momentum of the particle-wave coupled system is deserving
of closer study, since we believe that not only the momentum
of droplet and the vibrating bath must be considered, but also
those of the surface acoustic wave produced by the impact
and of the vibrating borders of the vessel.

Our proposal is that the symmetry breaking force of the
transition from the bouncing to the walking regime could be
due to space asymmetries of one between the deformation of
droplet, or the bath’s deformation or the acoustic wave pattern
or to an asymmetric vibration of the border.

In fact, the actual modellization of the transition between
the bouncing regime and the walking regime is based on the
surface orography of the vibrating bath, but this model does
not yet justify the mechanism by which the surface has a bro-
ken symmetry and moreover it assumes that the droplet is
punctiform. We assume that the surface bath geometry asym-
metry is caused by an acoustic gravity wave and not just by a
surface gravity wave [20].

Furthermore, at present there is no model that has a fre-
quency dependent broken symmetry mechanism.

Finally, although there are some experimental studies of

the droplet volume pulsation, presently we lack a model that
tries to implement this experimental fact. In the following
section, we analyze some critical aspects of the stroboscopic
model which we believe are yet to be explored.

2 Critical aspects of stroboscopic models

The stroboscopic model of Bush-Molaceck and the general-
ized integral model of Oza [9, 11, 13] has been till now the
most successful and most used model to rationalize walking
droplets.

The two major hypotheses on which it is based are the
following [5]:

1) The bath height oscillations are described by standing
monochromatic waves.

2) The bath Faraday wave field is resonant with the bounc-
ing oscillations (the mode is (2,1)).

The efforts to improve and generalize this model are stim-
ulated by the desire to extend it to multiple droplets dynamics
and to describe more accurately the spatio-temporal decay of
the bouncing induced Faraday waves.

In the following, we will describe some other hypothe-
ses which we consider need to be better justified and maybe
generalized.

The general approach to describe droplet-bath dynamics
is to separate the horizontal and the vertical dynamics during
flight; on the contrary, we believe that if we want to describe
more accurately the real spatio-temporal extended impact be-
tween the drop and the bath, we have to consider the succes-
sive volume oscillations of the droplet and the acoustic waves
beneath the surface bath.

In fact, they persist after the impacts and therefore imple-
ment a dynamical memory dependent coupling which more-
over hides some energy and momentum whose conservation
may be deepened.

The first stroboscopic model [9] contained discrete sums
of Bessel functions describing the wavefield and used in the
trajectory equation averaged over the bouncing period:

mẍi + Dẋi = −mg S (hi(xi, t))∇hi(xi, t) (1)
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where D is the drag coefficient, h is the bath height and S =

sin Φ is the impact phase which is dependent on the mean
phase of the wave during the drop contact.

In particular, this model assumes that the height of the
vibrating bath is given by a linear superposition of n circular
waves each one generated by the drop impact described by
the following relation:

h(x, tN) =

N−1∑
−∞

Ae−(x−xn)/δ

|x − xn|
−1/2 e−(tN−tn)/τ cos(kF | x− xn|+ Φ) . (2)

Recently, some authors [12] have proposed generaliza-
tions based on the mean wave field, but all the generalizations
are based on the hypothesis of instantaneous and punctiform
gradient of the surface wave slope and are aimed to rational-
ize the wavelike statistics of irregular unstable orbits.

Finally, we wish to note that thus far we lack a self-consis-
tent explanation of the origin of the symmetry breaking force
and its associated horizontal momentum transfer.

In the following section, we want to discuss a proposal
which attempts to overcome these difficulties and to connect
this problem to the search of an energy minimization prin-
ciple which could explain the main features of the walking
droplets stable orbits.

3 Generalized stroboscopic model

We propose to generalize the stroboscopic model by introduc-
ing a horizontal force which depends on the frequency and the
volume pulsation of the droplet. In particular we implement
a memory dependent force taking into account the previous
volume oscillation.

Given an horizontal plane of the non-vibrating bath repre-
sented by x and y, our generalized symmetry breaking force
starting from [10] is the following:

~Fxy =

∫ t

t−t0
∇p V̇ dτ = m

∆~vxy

τ0
(3)

where:

• t0 is the impact time of the droplet with the bath and it
is the inverse of the frequency of the volume pulsation;

• V is the volume of the droplet and V̇ is the derivative
with respect to time;

• ∇p is the gradient of the bath pressure wave.

This force disappears when t0 = 0, while it converges to that
one of the stroboscopic model when the frequency of the pul-
sation is 0.

Our proposal assumes that this force is present only dur-
ing the impact and that the pressure on the droplet is due to
the potential gravitational energy of the deformed bath.

In fact, differently from the Bush-Molacek model, the real
geometrical profile of the vibrating path during the impact is
no more sinusoidal. The bath absorbs elastic energy from

the bouncing droplet during the impact and consequently it is
deformed.

The height difference between the sinusoidal profile and
the modified profile gives the potential energy to the deform-
ed droplet.

Our hypothesis is that the pressure p and the height dif-
ference are given by the following formula derived from the
theorem of conservation of the fluid energy:

p + ρbath ge f f ∆h = cos t (4)

where ρ is the bath density, ge f f is the same used in the stro-
boscopic model [13] (also denoted as g∗) and p is the pressure
induced in the bath after the droplet’s impact.

This equation can be generalized since the external vibrat-
ing force continuously adds energy to the bath:

p + ρbath ge f f ∆h = α(t) (5)

where α(t) is a periodic function dependent on the oscillatory
force and on the volume deformation; ∆h is the variation of
the harmonic oscillation of the height of the bath caused by
the impact of the droplet.

The introduction of this force (which is present only dur-
ing the impact) requires a generalization of the horizontal
dynamics of the walking droplet. Moreover we continue to
assume the usual vertical periodic dynamic of stroboscopic
model.

If during the impact, we apply to Newton equation (3) us-
ing the formalism of the finite difference instead of the deriva-
tive, the gradient operator to (5), we arrive at the following
model (since we assumed that α depended only on the time
t):

m
∆~vxy

τ0 + TF
+

∫ t+TF

t−τ0

D
~vxy V̇ dτ

∆V
=

= −

∫ t+TF

t−τ0

ρ∇(ge f f ∆h) V̇ dτ

(6)

where:

• TF is the inverse of the Faraday frequency of the vibrat-
ing bath;

• the instantaneous acceleration used by the stroboscopic
model has been substituted by the finite difference vari-
ation of the velocity during the impact time τ0;

• V(t) is the time dependent volume pulsation of the dro-
plet that can be assumed to be described by the follow-
ing formula:

V(t) − V0 = V0 cos(ωt) e−λt

an exponential decay of an harmonic oscillation with
ω the frequency of droplet self-mode oscillation and λ
the time decay coefficient;
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• ge f f is the asymmetric effective gravity dependent on
the local frequency given by the following relation:

ge f f = γ sin[2π f (x) t]

where f (x) is the space-dependent local frequency cau-
sed by the asymmetric acoustic wave interference pro-
cess not considering the dissipation;

• the first integral is a temporal average of the drag force
over the past volume pulsation of the droplet of the drag
force;

• the second integral has been obtained from (4);

• the gradient in the last integral is due to space asym-
metry of the effective gravity of the bath, which we hy-
pothesized could be associated to a space dependence
of the bath vibrating frequency.

It is interesting to show that it is possible to recover the main
aspect of the stroboscopic model in the following way:

• the first term m ∆~vxy

τ0+TF
gives the usual discretized accel-

eration when the impact time τ0 goes to zero;

• the second term
∫ t+TF

t−τ0
D ~vxyV̇dτ

∆V becomes the dissipative
term during the flight when the impact time goes to
zero;

• the second member is able to reproduce the slope gra-
dient term −F(t)∇h(xp, t) introduced by Bush et al [11]
when τ0 tends to zero and applying the gradient to (4);
in the stroboscopic model the effective gravity is assu-
med to be space-independent differently from our mo-
del.

This model, of course, contains a hidden variable that is the
space-dependent frequency vibrating of the bath. This vari-
able allows to fit the numerical model in order to be in agree-
ment with the stroboscopic model, but could be deduced by
coupling (6) with another law that relates the pressure with
the volume pulsation, assuming that α(t) of (5) is proportional
to the second time derivative of the droplet volume [16].

On the contrary to the stroboscopic models, we don’t ma-
ke any ad hoc assumption on the geometric pattern of the sur-
face wave since we think that it should be deduced by inves-
tigating experimentally the acoustic spectrum of the surface
acoustic gravity wave.

Among many ad hoc and arbitrary hypotheses, we think
that a simple option could be the sound emission law taken
from [16]:

φ = −
V̇(t)
4πr

(7)

where r is the position of a point with respect to the initial
impact of the droplet and φ is the usual velocity potential of
the bath that is related to the effective gravity described by the
following formula:

∇φ̇ = a · ge f f (8)

with a a dimensional constant.
Finally, we assume that the oscillating acoustic pressure

perturbation and the acoustic velocity field obey the following
equations of motion:

ρ dt~v = −∇p , β dt p = −∇ ·~v . (9)

where ρ is the density of the bath, p is the acoustic pressure,
dt~v is the convective temporal derivative of the moving fluid,
β is the inverse of B the bulk modulus of the acoustic pressure
wave [15]; this is a self-consistent system of partial differen-
tial equations which determines the coupled dynamic of the
system.

This choice is motivated by the link between an oscillat-
ing volume and the generation of an acoustic spin wave in a
fluid as described in [19]. We suggest that it could be inter-
esting for the experimental researcher to study the change of
the acoustic spectrum during the transition from the bouncing
regime to the walking regime and could be an operative way
to verify or, eventually, falsify the general model proposed.

4 Conclusions

We have studied the problem of the origin of the symmetry
breaking force that causes the asymmetry of the wave pat-
tern of vibrating bath. We propose a generalized stroboscopic
model of an extended and deformable walking droplet.

In particular, our proposal is based on the hypothesis that
each bounce generates an acoustic gravity on the surface and
its asymmetric reflection causes a space dependent bath vi-
brating frequency.

Recently a new class of walking droplets, called super-
walkers, have been discovered [21]. These new observations
show a strong correlation between the volume of the droplet
and the duration of the impact with the velocity of the walking
droplet. This property may be interpreted as an indirect con-
firmation of our hypothesized coupling between the volume
deformation and the droplet dynamic.

We hope that our approach will stimulate more exten-
sive experimental research on the energy of the global system
(droplet and vibrating bath).

In particular we think that all the models lack an expla-
nation of the role of the energy and its non-conservation and
minimization on the discrete orbit of the walking droplets; in
fact, the dynamics of stroboscopic models of walking droplets
is based on empirical models and not on a general variational
principle of this peculiar dissipative system.

Our insight is that the energy and the impulse of the hor-
izontal motion of the walking droplets are associated to the
volume oscillation and the deformation of the bath which in-
duces an acoustic gravity wave with momentum and energy.

Furthermore, our opinion is that the volume oscillation
would induce density waves in the bath whose turbulence
could be explained by onset of turbulence as studied by Fran-
cois et al [17], whose origin could be caused by helicoidal
under surface sound waves.
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We think that this hidden energy due to volume pulsa-
tion could be experimentally investigated studying the rela-
tion with the momentum of the under bath acoustic wave; it
is fascinating to speculate that the law behind this could be
given by an acoustic hydrodynamic de Broglie-like relation
inherent to the energy of droplet volume pulsation:

m ∆vxy = H k (10)

where the first member refers to the kinematic momentum of
the droplet, and the second member is related to the acoustic
wave momentum with H the hydrodynamic analogue of the
Planck constant.

Finally, we think that it could be useful to explore ex-
perimentally the possibility to induce the transition from the
bouncing regime to the walking regime, making oscillating
the vessel keeping constant the frequency and the modulus
of the shaker vertical acceleration; we expect that there will
be a critical phase transition in a preferred direction from the
bouncing to the walking regime.

Received on June 26, 2020
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Since the discovery of stellar aberration, human perception failed to recognize the fun-
damental property of motion parallax to recover the depth of the universe. Stellar aber-
ration, the motion of the fixed stars in the perceived direction of Earth’s motion, is the
essence of reversed perspective [Purves D., Andrews T. J. Proc. Natl. Acad. Sci. USA,
1997, v. 94, 6517–6522]. The true-to-reality perception requires a finite-radius celestial
sphere, which functions as a non-inertial frame of reference; its coordinates along the
line-of-sight describe a Coriolis circulation at a parallax distance of 58.13 light-days.

1 Introduction

Theperception of a three-dimensional universe projected onto
a two-dimensional projection surface of the celestial sphere
is or becomes equivocal, because the uncertainty [1] requires
the distinction between illusion and veridicality. The recov-
ery of the missing third dimension, the depth of field is prone
to these two possibilities and may be best described by the
Necker illusion [1], which switches between proximal and
distal faces of a two dimensional representation of a cube.
The spatial relationship of the proximal and distal faces can
be ascertained by motion parallax so that the object moves
laterally in relation to the background, thereby providing per-
spective or true-to-reality perception [1]. The illusionary per-
ception, the distal and proximal faces of the cube are per-
ceived to be front, respectively, back, associates with reversed
perspective and motion parallax fails; the background appears
to rotate in the direction of motion. When considering ce-
lestial sphere grids at a finite and at an infinite distance, the
motion of Earth around the Sun will cause parallax of the
proximal grid in annual fashion with respect to the fixed stars.
However, perceiving the sphere surface as the distal grid, the
motion of the Earth will cause negative parallax of the stars,
which is known as stellar aberration [2]. Special relativity
proposed that space contraction in the direction of motion
is a logical consequence of the universal constant, the finite
speed of light. Among other laws of motion, it proclaimed the
law of stellar aberration [3], which as it stands is incompati-
ble with the finite-radius celestial sphere. To discern illusion
from reality, we address the intricacy of celestial sphere radii
(finite or infinite) in this thesis.

2 Celestial sphere considerations

The nature of a celestial sphere centered on Earth with a fixed
orientation (Fig. 1) and the apparent alignment with the fixed
stars suggests a stationary frame of reference. However, the
discovery of stellar aberration in the direction of Earth’s mo-
tion was a surprising phenomenon because a fixed point at
the firmament should not cause any measurable displacement.
Mathematically, centering the celestial sphere to Earth or to
an arbitrary planet in a fixed configuration, as shown in Fig. 1,

two rotational frame of references need to be reconciled with.
The anti-clockwise planetary orbit drives the celestial sphere
into rigid body circulation, subjecting the coordinates, ema-
nating from the centre towards the surface of the sphere along
the spindles, to the nonzero curl of the velocity field u,

ξ = ∇ × u, (1)

also known as the vorticity ξ. Because the rotation occurs in
the x-y plane, the vertical component ζ is nontrivial,

ζ =
∂v

∂x
−
∂u
∂y
, (2)

where u and v are the velocity components of the planetary
orbital velocity Ω × R, i.e.

u = −Ωy x̂

v = Ωx ŷ.
(3)

Substitution of (3) into (2) leads to the identity

ζ = 2Ω. (4)

This means that the unit vectors x̂, ŷ, ẑ (Fig. 1, left panel)
are locked to the orbital period of the planet, i.e, the vector
x̂ is facing the rotational axis Ω. To steady the sphere in a
fixed orientation requires a clockwise turning about its cen-
tre, which orients it in the stationary position (Fig. 1, right
panel). This clockwise turning does not nullify the vorticity
field of planetary motion, defining the celestial sphere sys-
tem as a non-inertial frame of reference. Fig. 2A is a graphi-
cal representation of a celestial sphere centered on the planet
with radial distance equal to the orbital radius of the planet.
An arbitrary spindle, from the centre of the planet to the sur-
face of the sphere, marked as 1-1, 2-2, 3-3, 4-4, 5-5 (Fig. 2A),
represents the fixed line-of-sight towards the firmament and
will describe an anti-clockwise circular trajectory. Divergent
light-rays (exemplified in Figs. 2A, 2B) from a star to a re-
ceiver become convergent lines from receiver to the source as
if they are parallel lines that vanish in perspective (Fig. 2A,
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Fig. 1: Coordinate systems. An orbiting coordinate system around the stationary Sun is period locked (a).The unit vectors maintain a
fixed orientation (b) by the clockwise annual spin of the celestial sphere about its axis ẑ to oppose the counterclockwise spin-orbit locking
about Ω. The origin of the celestial sphere moves at constant angular velocity about the axis Ω with a fixed distance r from the centre of an
inertial frame of reference.

2B), which also should hold when the light rays are truly par-
allel. This contrasts the divergent spindles of the celestial
sphere that never can become parallel and cannot vanish in
perspective as true parallel lines do∗. Thus, with respect to the
spindle of the celestial sphere, the direction to a star changes,
forming different angles with the chosen spindle. The orbital
trajectory of a spindle occurs further out in space when the
radius of the celestial sphere is increased. The completion of
a full planetary orbit of the sphere results in an imaginary Lis-
sajous figure that is produced by a hula-hoop mechanism of
the celestial sphere. The width of the donut-shaped Lissajous
equals the diameter of the planetary orbit. This imaginary
orbit, composed by the time-dependent endpoint of a single
spindle, is thus formed by a bundle of parallel lines (Fig. 2C).
If the radial distance of the spindle is increased we should
expect the imaginary orbit to vanish in perspective. But the
angling of the telescope as observed [2] appears to be a re-
quirement to adjust the celestial sphere coordinate system to
steady the stars [this thesis], suggesting a finite-radius celes-
tial sphere. We then could conclude, from whatever direction
observations are made, that the velocity field of a planet cre-
ates an imaginary orbit of a coordinate spindle about a star
representing the Sun. The imaginary Sun is then, alike the
endpoint of the celestial sphere spindle, located at the celes-
tial sphere surface, exemplifying the imaginary Sun-Earth or-
bit system at a finite distance. This “kinematic optical” ef-

∗Infiniteness of the celestial sphere is usually interpreted as if the spin-
dles are parallel lines. It then may be practical given the centre of the celestial
sphere would be everywhere [5].

fect at a distance, the frame-dependent Coriolis circulation, is
what aberration of light may represent and could be an equiv-
alent to Snell’s law.

3 The finite-radius celestial sphere

Figs. 3A and 3B highlight the angling necessary to maintain
the line-of-sight towards the perceived stationary imaginary
Sun Q in the ecliptic and pole directions, respectively. The
line-of-sight coincides with a spindle of the celestial sphere
and as shown the color coded circle and matching color-coded
spindle/radius defines the line EQ with length C, and is equal
to the centre-to-centre distance of the imaginary orbit and its
planetary orbit. Since the line-of-sight can be chosen at will
towards a star or an invisible point of interest, the angling
towards Q in the figures, is caused by the changing position
of the celestial sphere anchored to the orbital motion around
the Sun. The fixed distance C, i.e. EQ, suggests (Fig. 4) the
Scotch yoke reciprocating motion where the orbital position
of the planet, point E, changes the position of the centre of
the celestial sphere with respect to point Q (cf. Fig. 3). From
the viewpoint of O, Q will slide along the vertical axis that
coincides with the line OQ. According to the cosine rule, we
have

(EQ)2 = (OE)2 + (OQ)2 − 2 · OE · OQ · cos θ ,

(OE)2 = (EQ)2 + (OQ)2 − 2 · EQ · OQ · cos φ ,

where EQ is the equivalent of the crank rod length equaling
C and OE represents the orbital radius R. Substitution of the
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Fig. 2: Celestial sphere radius and the velocity field. Views of a planetary body rotating in a stationary frame of reference with the Sun
as its centre. The celestial sphere centered on the planet with the same radius as the orbit (a) has a fixed orientation. The spindle of the
celestial sphere at positions 1 trough 5 does not change in direction, while the direction to a star is dependent on the orbital motion of
the planet. The increase of the celestial sphere radius (b) and (c) reduces the angling to a star at a finite distance. The line-of-sight to the
surface of the celestial sphere (c) describes a circulation with the radius equal to the orbital radius. In perspective the subtended angle is
equal to the parallax angle. To keep the celestial sphere in a fixed orientation, the axial clockwise rotation opposes the counterclockwise
orbital motion of the celestial sphere. At the parallax distance the orbital velocity of the sphere surface is equal to the speed of light.

first cosine formula into the second cosine formula, replacing
(EQ)2, yields

OQ = R cos θ + C cos φ, (5)

where OQ represents the projection of the lines R and C with
respect to the stationary reference frame of the Sun. The first
term at the right hand side is the offset of point Q with respect
to the Sun, caused by orbital motion. The second term at
the right hand side describes the radial component of stellar
aberration. The law of sines,

R sin θ = C sin φ, (6)

corresponds to the tangential component of stellar aberration.
Substitution of (6) into (5) provides the combined form, in-
dependent of the subtending angle φ term, where the angle θ
equals the angular velocity θ̇ of the planet at time t, yielding

OQ = R cos θ +
√

C2 − R2 sin2 θ. (7)

Motion of point Q away or towards the Sun is the quintessen-
ce of the hula-hoop motion of the celestial sphere (Fig. 2 and
3), contributing to the decreasing and increasing parallax an-
gle φ, when observing aberration in the direction of the plane
of the ecliptic. The second term at the right hand side of (7),
normalized to C,

cos φ =

√
1 −

R2

C2 sin2 θ, (8)

is complementary to (6). In terms of v and c, multiplying the
radii R and C with the planetary angular velocity v = Ω × R
and c = Ω × C, the identities vc−1 = β = RC−1 modify the
above sine and cosine of φ (Eqs. 6, 8) to

sin φ = β sin θ (9)

and

cos φ =

√
1 − β2 sin2 θ. (10)
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Fig. 3: Geometry of negative parallax. Point O represents the Sun and E is the position of the Earth in its orbit. Earth is the centre of
the celestial sphere, the light blue circle is the Earth orbital plane and the dark blue filled circle is the traced-out orbital path of the Earth at
distance C. (a): geometry of the celestial sphere in the ecliptic plane. (b): geometry of the celestial sphere towards the poles of the sphere.

Eq. (9) is reminiscent of the formula used to describe Snell’s
law, when referring to light or other waves passing through a
boundary, which would be the celestial sphere surface that has
a tangential velocity equal to the luminal speed c (Fig. 2C).
The spindle EQ (Fig. 4) is the line-of-sight to and coincides
with a light ray from the faraway fixed star of interest. The
flight time of light from Q to E (see Sections 5 and 6) equals
one radian of the orbit and is another property of the “kine-
matic optical” effect at a distance. The value of the aberration
of light is defined when θ = ±90◦. The Pythagorean (9–10)
becomes a right triangle. This condition is also equivalent
to the line-of-sight when EQ is perpendicular to the ecliptic.
The right triangle in terms of β is a Lorentz triangle with sides
1, β and γβ, where

sin φ = β,

cos φ =

√
1 − β2 = γ−1.

(11)

The cosine term is identical to the reciprocal of the Lorentz
gamma factor, i.e. γ = sec φ, which in terms of the special
theory scales the Lorentz transformation matrix. Thus, the
outcome of this treatise on the fixed and finite celestial sphere
radius, leads to the same aberration of stellar light β but with
opposite sign. In terms of the three-dimensional universe the
stars are no longer perceived illusory and will behave veridi-
cally [1].

4 Transformation matrices

The general form of the special case (11), embodied by (9)
and (10), also provides novel insight in which motion in-
volves not only a change of β when considering the direction
cosine, the line-of-sight, but also a change of the gamma-like

factor (10). Given the radial vector r and time t, utilizing
(9–10) instead of γ and β (11) as defined and used in the
Lorentz transformation matrix [3], premultiplication of the
vector [t, r] with the generalized and modified Lorentz trans-
formation matrix containing the vorticity entries, i.e. (9) and
(10), [

t′

r′

]
=

[
sec φ −c−1 tan φ
−c tan φ sec φ

] [
t
r

]
, (12)

results in

t′ = sec φ
(
t − rc−1 sin φ

)
(13a)

r′ = sec φ (r − ct sin φ) . (13b)

The derivation of the Lorentz transformation, matrix L in-
volved the Galilean matrix, G, and an assisting∗ or temporal
matrix, T. In generalized vorticity forms (cf. (12)) they be-
come

G� =

[
1 0

−c sin φ 1

]
(14)

and

T� =

[
cos φ −c−1 tan φ

0 sec φ

]
. (15)

Premultiplication of G� with T� gives the Lorentz matrix
(cf. (12))

L� = T�G� . (16)

If θ = ±90◦ (9–10), these matrices reduce to those Einstein
derived. The subscript � refers to a circular path with the
line-of-sight along a spindle of the celestial sphere. Matrix
L� exemplifies the finite speed of light embodied by matrix

∗The Lorentz matrix was heralded by the Zeitgeist of thence. The assist-
ing system did not gain significance given its auxiliary status.
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Fig. 4: Scotch yoke reciprocating motion. Earth’s celestial sphere (light blue) with respect to the origin O, (the Sun) at (a), (b) and (c),
affects the position of point Q, which is the imaginary Sun (see Section 2) as seen from Earth, E, sliding it up and down along the vertical
line from O to Q. The line EQ is the line-of-sight (a celestial sphere spindle) with a fixed length. A complete revolution of Earth replicates
the orbit of Earth (red colored). Earth’s celestial sphere at (c) in the equatorial plane is replicated as (d) when the line-of-sight is towards
the celestial pole.

T�, exemplifies the invariance of c and G� exemplifies the
Galilean transform. The location of a point in space and time
is described by matrix G�; to detect this point by light re-
quires a method, a transformation by using matrix T�. The
identities

G� = T−1
� L� , (17a)

T� = L�G−1
� , (17b)

constitute a mechanism to transform a light-clock signal orig-
inating from a point and defined by matrix L� to what will
be an ordinary light-independent point in space and time de-
fined by matrix G�. The true form of identifying an object is
not perceived by light, which confirms Bradley’s assessment
300 years ago or in other words these matrices correct for the
delay of arrival time of light. The identities (17) suggest to

convert light-signal based data to real data allowing ordinary
addition of velocities and if necessary use the identity (16) to
determine the Doppler effect.

5 The one radian of an orbit

The parallactic displacement of the coordinate system defined
by β equaling vc−1 = RC−1 for each of the planets of the solar
system were calculated from their orbital radius R (Table 1,
row 1) and period T (Table 1, row 2), yielding β, the radius of
the celestial sphere C and the aberration angle φ = arcsin β
(Table 1, row 3). The celestial sphere radii increase with
decreasing aberration angle, while the ratio of the celestial
sphere radius C and period T of the planetary orbit

C
T

=
Ω ×C

2π
=

c
2π

(18)
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Table 1: The planets of the solar system are listed with their orbital radius R (row 1, [au]), period T (row 2, [year]) and the aberration angle
φ [arcsec]. The duration of a light signal from the celestial sphere surface to the planet µ−1 (row 4, [day]) equals the one radian of the orbit,
see (18). Based on the planet-Sun barycentre distance, bc (row 5, [km]), the solar orbit velocity vS un (row 6, [m/s]) was calculated using the
planetary period T . The ratio of solar orbit velocity and the speed of light is provided in terms of an aberration angle φbc (row 7, [arcsec]),
representing the planetary-specific celestial sphere of the Sun (see Section 7).

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

R 0.39 0.72 1 1.52 5.2 9.54 19.2 30.1
T 0.241 0.615 1 1.88 11.9 29.5 84.1 164.8
φ 33.19 24.09 20.49 16.6 8.99 6.64 4.68 3.74
µ−1 14.01 35.75 58.13 109.28 691.75 1,714.83 4,888.73 9,578.82
bc 10 265 445 74 742,465 408,110 12,585 230,609
vS un 0.007936 0.08577 0.08955 0.007786 12.467 2.759 0.2967 0.2786
φbc 0.000005 0.00006 0.00006 0.000005 0.0086 0.0019 0.0002 0.0002

is a constant, 10 066.61 au/year, i.e. one radian of the orbit,
which equals the duration of a light signal from the celestial
sphere surface to the centre of Earth – for Earth it is 58.13
days (Table 1, row 4). This value is the reciprocal of the
Gaussian gravitational constant confirming planetary-specific
finite-radius celestial spheres and aberration angles according
to Kepler’s third law of planetary motion and Newton’s law
of gravitation. In terms of β, Kepler’s law becomes

rk =
4π2K

c2 = β2R, (19)

where K is Kepler’s constant and the radius rk is half the value
of the Schwarzschild radius. Newton’s law becomes

rk =
GM
c2 = β2R (20)

with G the gravitational constant, and M the mass of the solar
system. The value of rk equals 1476.24711 m. The relation
between the Kepler radius (or half the Schwarzschild radius),
the parallactic aberration angle and the one radian of an orbit
may lead to the concept of discrete radii of the celestial sphere
with the vanishing of Earth’s imaginary orbit in perspective to
infinity, depending on the optical resolution of detection.

6 Multiple discrete stellar aberrations

The one radian of a circle is the equivalent of a phase shift of
1 rad between planetary motion and the arrival time of light
from the surface of the celestial sphere, which can be under-
stood from considering the planetary orbit and its imaginary
orbit at distance C. Both orbits are in phase, but a light sig-
nal requires time to arrive and during the delay the planet
travels a curved distance equal to its orbital radius R. This
phase difference of 1 rad, noting its association with the ra-
dius C = β−1R may suggest additional radii β−nR, because the
phase-shift will be precisely 1 rad under these conditions. For

Earth, when n equals 2, the flight time of light is a little over
1 602 light-years, i.e. equivalent to 1 602 orbital revolutions.
The wobbling (hula hoop) of the celestial sphere traces out
the planetary orbit at β−1R and β−2R, and thus, light from ∼58
days ago and from ∼1 602 years ago are simultaneously ob-
served along the same celestial sphere spindle and in-phase.
The vanishing of imaginary planetary orbits at discrete dis-
tances in perspective and by virtue of the visibility of the stars
by vanishing stellar aberrations (20.49 arcsec, 0.002 arcsec,
. . . ) in perspective is a powerful mechanism to observe depth.
Instead of having a celestial sphere with an infinite radius to
measure parallactic displacement of stars in the opposite di-
rection of motion, a finite-radius celestial sphere causes neg-
ative parallax of all the stars, not some (Fig. 2). Each depth
marker on a spindle defines the coordinate at a distance and
motion of the observer perpendicular to the line-of-sight does
not significantly alter the coordinates at the depth markers
faraway with respect to the line-of-sight, in contrast to depth
markers nearby. Multiple markers along a spindle and van-
ishing parallel lines in perspective provide depth perception
because the line-of-sight cross spindles when the coordinate
system is in motion. The multitude of discrete radii for a
given celestial sphere and a fixed line-of-sight along a spin-
dle, i.e. when the telescope is not adjusted, will scan a cir-
cular area of the firmament creating a radial field of view
of 90◦ (β0 = 1, cf. Fig. 2A), a radial field of view of 20.49
seconds of an arc (β1, cf. Fig. 2C), a radial field of view of
0.002 seconds of an arc (β2), a radial field of view of 0.2
microseconds of an arc (β3), and so on, centered on an imag-
inary Sun in an anti-clockwise fashion. Large scale rotations
suggesting a cosmic web have been reported recently. For
example, galaxy rotation appeared to be considerably coher-
ent with the average line-of-sight motion of neighbors at far
distances (1–6 Mpc). These rotations are counterclockwise
and have a mean velocity at ∼30.6 km/s [4], which resembles
Earth’s orbital velocity. The values reported are consistent
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Fig. 5: Inversion Circle. The logarithmic scale with base β−1 separates the circles (left and right panels). The inversion circle (black)
is identical to the planetary orbit (red) when n = 0 ( 24). The green circles represent a circle with radius R/β equal to C when n = 1,
the principal celestial sphere radius as described in this paper, and its inverse with the inverse radius βR when n = −1. Likewise, the blue
circle with n = 2 is the secondary radius of the celestial sphere (cf. (25)) and its inverse, blue circle with n = −2, is the Kepler radius rk

(19–20). The 3-dimensional view (right panel), when viewed from the top, shows the discrete vanishing orbit of Earth in perspective and
when viewed from the bottom indicates the stepwise increase of the radius of the celestial sphere.

with a radial field of view equivalent to β3. Stellar aberration
correction in the context of an infinite-radius celestial sphere
overcorrects the position of the stars. It causes the fixed stars
to have positive parallax and inadvertently make them nearby
stars. Instead, abandoning corrective measures and recog-
nizing the finite-radius celestial sphere, stars or nebulae ex-
hibiting positive parallax above 0.002 arcsec are within 1 602
light-years of Earth, and those with less than 0.002 arcsec but
above 0.2 µarcsec are within 16 million light-years (4.9 Mpc)
from Earth.

7 Solar barycentre precession

With respect to Earth, motion of the other planets add addi-
tional aberration of the fixed stars by the wobbling Sun be-
cause the solar system barycentre is composed by the indi-
vidual barycenters for each planet∗. Sun and planet share a
common celestial sphere because the angular velocity, cen-
tered on the barycentre of the Sun and planet orbits, is iden-

∗en.wikipedia.org/wiki/Barycentric coordinates (astronomy)

tical, but the orbital velocities of Sun and planet are different
and so are the subtending angles that define stellar aberration
when viewed from the Sun and planet, respectively. Table 1
(rows 3–6) tabulates specific planetary-based values of Sun’s
offset to and orbital velocity around the individual barycen-
tre. Major contributors to affect the common barycentre are
Jupiter, Saturn, Neptune and Uranus in that order. In return,
orbits of planetary celestial spheres change with the periods
of the outer planets adding offsets to stellar aberration. Focus-
ing on the effect of Jupiter has on each of the planetary celes-
tial spheres, the torque produced by Jupiter on the Sun adds
a wobble with a period of 11.9 Earth-years. The stellar aber-
ration from the Sun orbit around the Sun-Jupiter barycentre
equals a subtending angle of 0.00858 seconds of an arc (Ta-
ble 1, row 7) and becomes an independent component of stel-
lar aberration as observed on Earth. Saturn, Neptune, Uranus
contribute significantly and affect the solar system barycentre
radius, giving rise to a precession of the celestial sphere co-
ordinates, or in other words, the counterclockwise precession
of the solar system barycentre will be “written” at each and
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every point of the coordinate system. The barycentre-induced
wobble of the Sun might explain S-02’s motion centered on
Sagittarius A* that has currently a period of about 15 years,
has an inclination similar to the ecliptic with respect to the
galactic centre and matches the Sun’s current orbit and pe-
riod around the solar system barycentre. The year-by-year
(Earth year) subtending angle of the apparent orbit of S-02
as seen from Earth matches the 0.00858 seconds of an arc
(Table 1, row 7). Additional contributions are caused by Sat-
urn and Uranus because they are currently located relatively
close to Jupiter’s position. S-02 is known to rotate in a clock-
wise direction and is consistent with the notion that Jupiter
lags Earth’s motion and Earth is the reference against which
Jupiter will have the clockwise direction as has the Sun. We
note that there are other stars revolving Sagittarius A* with
significant longer periods and different inclinations, not asso-
ciated with the solar barycentre or the ecliptic; this does not
take away a possible explanation for S-02’s motion.

8 Geometric inversions about an inversion circle

The tracing out of multiple imaginary orbits at discrete dis-
tances (Fig. 5), according to

Cn = β−nR, (21)

suggests also considerations when n ≤ 0. If n = 0 it follows
that the celestial sphere radius C0 equals the orbital radius R
and (7) becomes (cf. (6))

OQ = R cos θ ± R cos θ, (22)

because θ = φ. This scenario is the equivalent of the fictitious
annual circulation (negative parallax) of the Sun through the
zodiac. When n < 0, and by generalizing (19), (cf. (21)) we
get

rk = β2+nCn (23)

celestial sphere radii less than the orbital radius. Since the
vorticity, i.e. the velocity field, is determined by the angu-
lar velocity of the orbit, the tangential velocity of the celes-
tial sphere coordinates will be less than the orbital velocity.
Defining uC as the tangential velocity of the coordinates and
Ω as the angular velocity of the planetary orbit and utilizing
(21) for n ∈ N, and defining u′C when n is negative, we get

uC = Ω ×Cn = Ω × β−nR = β−nv

u′C = Ω ×C′n = Ω × βnR = βnv.
(24)

These equations suggest geometric inversion of points on the
circle Cn to their inverse points on circle C′n with respect to an
inversion circle with inversion centre E and inversion radius
R. The points on circles Cn and C′n obey CnC′n = R2, the
defining feature of circle inversion. Furthermore, the radius
C′2 = β2R, identical to the Kepler radius rk (19), has its inverse

r′k = β−2R (25)

as defined by C2. The tangential velocities of points and their
inverse points (the coordinates) obey

uC u′C = v2 ⇔
u′C
v

=
v

uC
. (26)

The Sun’s position O and its inverse O′, where O′ = O, are
located on the inversion circle. The line-of-sight from the
inversion centre E (Fig. 4) to point Q on C1 harbors Q′ on C′1
(5). In other words, when n is positive, the fictitious orbit is
located at the radial distance Cn; when n is negative, C′n is the
radius of the vanishing fictitious orbit in perspective (Fig. 5).

9 Velocity field of the orbit of the Sun

Diurnal and annual motion of the heavens led to paradigm re-
versals, leading to the first and second motions of the Earth.
The third motion of Earth, now known as the axial preces-
sion, was, in ancient and medieval times, ascribed to the pre-
cession of the equinoxes, a westward motion of the equinoxes
along the ecliptic relative to the fixed stars in a cycle of 25 776
years. Precession affected all fixed stars as well as the appar-
ent position of the Sun relative to the backdrop of the stars.
The heavens slowly regress a full 360◦ through the zodiac at
the rate of 50.3 seconds of arc per year∗. Also, other ancient
astrologers discovered that the equinoxes “trepidated”, par-
ticularly along an arc of 46◦40’ [6], i.e. twice the obliquity
of the equinoxes, in one direction and a return to the starting
point, resembling how stellar aberration was discovered [2].
The precession and the trepidation appear to be two aspects of
the same to-be-proposed frame dependent circulation (Fig. 6),
which contrasts Newton’s axial precession involving gravita-
tional forces of the Sun and the Moon. Envisioning the Sun
orbiting a centre counterclockwise with a period of 25 776
years, with the axis of the Earth in a fixed position (Fig. 6)
and noting (18), the radius of the celestial sphere of the Sun
becomes 4 102 light-years. Because the equinoctial aberra-
tion of the stars is 23.4◦, β equals 0.3971, we get an orbital
velocity of 119 062 km/s. The radius of the orbit (cf. (21)) is
491.5 pc, or 1 602 light-years and Kepler’s radius (19) equals
75.0 pc, which translates to 1.57 × 1015 solar masses at the
centre of rotation, vastly exceeding (by 4 magnitudes) cur-
rent estimates of the Milky Way. The inclination of the zo-
diacal plane with respect to the invariable plane of the Milky
Way galaxy may suggest that the centre of the precession of
the equinoxes is not Sagittarius A*. While these values are
staggering, concerning or exciting, there may be truth from
ancient recordings.

10 Doppler shift measurements from a non-inertial ref-
erence frame

Spectroscopic measurement of electromagnetic radiation re-
quires knowledge of Earth’s motion, which includes not only
the first and second motions, but also the third (Section 9) and

∗en.wikipedia.org/wiki/Axial precession
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Fig. 6: Stellar aberration by the precession of the equinoxes. The orbit of Earth around the Sun is shown at four different positions of
the Sun in its orbit about the equinoctial center shown as a blue-colored donut shaped symbol. The color coded arrows centered on Earth
depicts the north celestial pole of Earth’s celestial sphere. The color coded arrows centered on the Sun defines the north celestial pole of
the celestial sphere of the Sun. It is assumed that the orbit of the Sun has an obliquity of 30◦. Sun’s orbit causes stellar aberration with
an angular distance of 23.4◦, causing equinoctial precession aberration at the vernal equinox. The line-of-sight in the direction of the first
point of Aries (0◦) is shown by a black arrow. Equinoctial aberration occurs in all directions of the line-of-sight similar to the oscillatory
motion of the annual stellar aberration caused by Earth’s motion around the Sun.

higher motions. The transformations (13), according to ma-
trix L� (16), transform the arguments of a sinusoidal wave,

ωt′ = kr′, (27)

whereω is the angular frequency and k is the angular wavenu-
mber of the waveform, to

ω sec φ
(
t − rc−1 sin φ

)
= k sec φ (r − ct sin φ) . (28)

Because ωk−1 = c, the above identity after rearranging be-
comes

ωt sec φ (1 + sin φ) = kr sec φ (1 + sin φ) . (29)

We note that the velocity u of the wave is not affected because

u =
r
t

=
ω sec φ (1 + sin φ)
k sec φ (1 + sin φ)

= c, (30)

which is the defining feature of the Lorentz matrix. The trans-
formation changes the waveform by sec φ(1+sin φ) in the fre-
quency and wavenumber domains with sin φ representing the

direction cosine, i.e. the line-of-sight. This Doppler effect,
alternatively expressed in terms of sin θ (7–9) along the line-
of-sight relative to the position of the planet in its orbit, yields
a shift z by

z + 1 = sec φ(1 + sin φ) =

√
1 + β sin θ
1 − β sin θ

. (31)

Eq. (31) is applicable to any circular motion obeying Kepler’s
law, such as the Global Position System that sends radio sig-
nals. Receivers on Earth will detect a changing Doppler shift
depending on the line-of-sight φ. Another example tied to
(31) is the meaning of a gravitational redshift, which is the
equivalent of traversing the Kepler circulation encountering
an ever decreasing vorticity with increasing radial distance
(19). The cosmological redshift, representing the expansion
of the coordinate system, allows speeds greater than the speed
of light, where v represents the speed of expansion, not of mo-
tion. However, when the ratio of frequencies is equated with
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(peculiar) motion v/c,

z + 1 =
ωreceiver

ωsource
=
v

c
+ 1, (32)

and noting the last reported value z = 11.1 from galaxy GN-
z11, the matrix identities (16,17) and their interpretation(Sec-
tion 4) do not indicate incompatibility with the Doppler ef-
fect. Hence, the expanding universe is likely to be illusionary.
In the context of Earth and its celestial sphere being subject
to a multitude of circular motions and considering (31) that
has two unknowns, θ and β, they may indicate novel periodic
changes of the Doppler shift. It is possible that a multitude
of orbits would temporally increase Earth’s nominal velocity
to go beyond the speed of light. The detection of frequency
shifts of the order of GN-z11, using L� (16), may indicate
this and if assuming the Milky Way has an orbital velocity
close to the speed of light and assuming sin θ = 1, we have
β = 0.984 for z = 11.1. So (32) becomes (cf. (31)),

ω2
r

ω2
s

=
1 + β sin θ
1 − β sin θ

⇒ β sin θ =
ω2

r − ω
2
s

ω2
r + ω2

s
. (33)

Stars and nebulae beyond the Milky Way may sometimes
shine very bright or become very dim at the firmament if
Earth obtains a nominal speed equal to the speed of light.
Beyond the speed of light the square root of (31) produces
an imaginary, inverse result. Geometric inversion (cf. (24))
means passing the luminal barrier, such that

u
c

=
c
u′
⇒ uu′ = c2, (34)

where u ≤ c and u′ ≥ c. We get

ω2
r

ω2
s

=
u′ + c sin θ
u′ − c sin θ

=
c2/u + c sin θ
c2/u − c sin θ

=
c + u sin θ
c − u sin θ

, (35)

which is identical to (31). The waveform emanating from a
body with velocity u′ is not different from a waveform em-
anating from a body with velocity u and the velocity of our
galaxy with respect to the speed of light might be either u or
u′. We might not know, but acknowledging frame-dependent
induced negative parallaxes may shed further insight in what
the universe looks like.

11 Conclusions

Illusion, paradox and true-to-reality phenomena are intertwi-
ned in our current worldview, governed by an infinite-radius
celestial sphere and merged with the theory of relativity that
suggests that space and time are not absolute. The human
perception of the third dimension of the universe, be it rela-
tivistic or classical in nature, suffers from reversed perspec-
tive. The transformations to detect the location of a point by
light is governed by the set of the Lorentz L, the Galilean G
and the light retardation T matrices. Vice versa, light signals

from objects are transformed by premultiplying the Lorentz
matrix with the inverse of the light retardation matrix to ob-
tain the Galilean transform. The finite-radius celestial sphere,
providing true-to-reality perception, changes the sign of the
direction of stellar aberration and therefore parallax of the
coordinate system. This recognition may explain co-rotating
satellite systems such as a large-scale structure of the universe
or the cosmic web. Another large structure of the universe is
envisioned based on a fixed Earth axis and a solar orbit with
a 1 602 light-year radius about an intragalactic centre caus-
ing the precession of the equinoxes with an equinoctial stel-
lar aberration of 23.4◦. The infinite-radius celestial sphere is
a relic of ancient times when Earth was considered the centre
of the universe. When the second motion of Earth became
main stream physics, it should have been accompanied with
a finite-radius celestial sphere. It did not because stellar aber-
ration was not discovered until 300 years ago.
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Propagation of a Particle in Discrete Time

Young Joo Noh
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In the concept of discrete time, we can guess the causal delay. A new analysis of causal
delays in the dynamics can provide views of two different worlds: type 1 and type 2.
In the case of a free particle, the evolution operator for each of them was obtained
and analyzed. As a result, type 1 particle could be interpreted as ordinary matter that
satisfies existing relativistic quantum mechanics. Type 2 particle is outside the quantum
mechanics category, but has some interesting physical properties. Type 2 particle acts
on gravity in the same way as ordinary matter, and does not interact with the U(1) gauge
field, and considering its energy density value, it can be interpreted as dark matter.

1 Introduction

The dynamical system aims to find dynamic variables that
change over time, which is the process of solving the equa-
tions of motion. The structure of the equation of motion com-
bines the amount of change of the dynamic variables with
time and the cause of the change.

As an example, let’s take a look at Newton’s laws of mo-
tion. Newton expressed his second law as follows:

Change of motion is proportional to impressed
motive force and is in the same direction as the
impressed force.

The equation of motion is as follows.

lim
∆t→0

∆~p
∆t

= ~F (t) .

Applying the cause-effect category to Newton’s law of motion
mentioned above, force is the cause and momentum changes
are the effects.

However, the point to note here is the time difference be-
tween the moment t when the cause force is applied and t+∆t
which is the moment when the resultant momentum change
appears. Naturally, in continuous space and time, this time
difference is infinitely small, so the cause and effect are “si-
multaneous”. Let’s call this simultaneity infinitesimally dif-
ferent simultaneity. This infinitesimally different simultane-
ity is assumed in all dynamic systems based on continuous
space and time: Newtonian mechanics, Lagrangian mechan-
ics, Hamiltonian mechanics, Quantum mechanics, etc.

By the way, this infinitesimally different simultaneity is
two different points, unlike true simultaneity which is iden-
tical. Because if they are the same, then at any moment an
object has to have both momentum before the cause and mo-
mentum after the cause. The distinction between two points
in infinitesimally different simultaneity in continuous space
and time is meaningless, but in discrete time, there is a mini-
mum value ∆td for time change and two points for cause and
effect, resulting in a delay of time ∆td between cause and ef-
fect.

The delay between cause and effect will of course affect
the description of the dynamics, which requires an evolution
operator for a particle in discrete time. There are two types of
results in this process, one that is consistent with existing rel-
ativistic quantum mechanics and another that is entirely new.

2 Definitions

2.1 Cause-effect vectors

Considering the causal delay, we cannot define the “real state”
at one moment, as in quantum mechanics, and define the “real
state” within the minimum time ∆td. The existing quantum
mechanical state with 4-momentum pµ at a point xα in space-
time can be called φp (xα) which is caused by xα − ∆xα or
xα + ∆xα due to the causal delay. Where ∆xα is a timelike
4-vector, meaning cause-effect delation in space-time. The
time component of ∆xα is an amount representing the cause-
effect time delation ∆td and the spatial component represents
the distance the object moved during the time delay.∗

Therefore, the definition of the “real state” in discrete
time must be made by combining coordinate values with
φp (xα). So there are two definitions, past-future cause-effect
vector and future-past cause-effect vector. Where φp (xα) is
tentatively scalar.

past-future cause-effect vector : xµφp (xα + ∆xα) ,

future-past cause-effect vector : (xµ + ∆xµ) φp (xα) .

2.2 Difference of cause-effect vectors

Since there are two states between ∆xα as discussed above,
by combining them, the state change can be of two types:

type 1 : (xµ + ∆xµ) φp (xα) − xµφp′ (xα + ∆xα) . (1)

type 2 : xµφp′
(
xα + ∆x′α

)
− (xµ − ∆xµ) φp (xα) . (2)

∗In this paper, unlike time, distance in space does not assume its mini-
mum value. The discreteness of space is a controversial topic and has nothing
to do with the content of this paper.
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The two types are shown schematically in Fig. 1.∗ As
shown in Fig. 1, type 1 is the difference between future-past
cause-effect vector and past-future cause-effect vector, and
type 2 consists onlyof the difference between past-future cau-
se-effect vectors.

                                                                  ′
′

   

                                                                                            

          
              

            ′


   

                                  

                                                 
                                                             

                                                                     

′
                                                     

                                                                  

                                                                  

                    type1                       type2

Fig. 1: Schematics of type 1 and type 2

3 Calculations of difference of cause-effect vectors for a
free particle

Assumption 1 : In type 1, the state value φp (xα) at point xα

has the same magnitude of contribution at xα − ∆xα and xα +

∆xα.

                                                                
                                                        

                                               
                                             

               

            

                                                                                     

                                                                 
                                                                   

                                 
                                    

                                       

                                      

Fig. 2: Contributions to each φ

In Fig. 2, φ (x) is a mixture of contributions from x − ∆x
and x + ∆x. The same applies to the other φ’s. This can be
written in the following way. p is omitted because it is the
same.

φ (x) = φx−∆x (x) + φx+∆x (x) . (3)

This contribution in space-time is shown in Fig. 3.
As shown in the Fig. 3, the two contributions to φ (x) at

xµ will act in opposite directions on the tangent of the dotted
world line. Thus both contributions will be offset. The same
is true for vectors. That is, scalars and vectors cannot describe
type 1.

∗In discrete time, the trajectory in space-time cannot be a solid line,
only a jump from point to point. The solid trajectory in Fig. 1 and 2 is just
for readability.

   
    

                                            
 

                                             

                                                 

              
 

                                              

                                                

                                              

           

          

                                                                                                                        

Fig. 3: two contributions to φ (x)

What about the spinor? In Fig. 3, the two spinors are also
the same magnitude and in opposite directions, but the sum
is not zero. Because in spinor space the two spinors are or-
thogonal. Two orthogonal spinors correspond to

(
1
0

)
and

(
0
1

)
,

respectively, which correspond to spin 1
2 . Thus, only spin 1

2
spinors can describe type 1.

Now, if the spinor is constant, the difference of cause-
effect vectors for a 2-component spinor Ψa (x) is defined as
follows.

type 1 : (xµ + ∆xµ) Ψa (x) − xµΨa (x + ∆x) . (4)

In the case of a free particle, the difference of cause-effect
vectors for type 2 is also shown.

type 2 : xµφ (x + ∆x) − (xµ − ∆xµ) φ (x) . (5)

Assumption 2 : Ψ and φ are analytic functions.

But in reality it is discontinuous and it is difficult to figure
this out. This assumption approximates discontinuous Ψ and
φ as C∞ functions, which means looking at the dynamical
point of view that we are familiar with.

3.1 Type 1

Let’s express the spinor function Ψa (x) as a spinor part and a
scalar part depending on the coordinates as follows.

Ψa (x) = uaφ (x) . (6)

Then, (4) is as follows.

ua {(xµ + ∆xµ) φ (x) − xµφ (x + ∆x)} . (7)

So we only need to calculate the part for scalar.

(xµ + ∆xµ) φ (xα) − xµφ (xα + ∆xα)

= (xµ + ∆xµ) φ (xα) − xµ
∞∑

n=0

1
n!

(
∆xα

∂

∂xα

)n

φ (xα)

= ∆xλ
{
δ
µ
λφ (xα) − xµ

∂φ (xα)
∂xλ

}
−

− xµ
∞∑

n=2

1
n!

(
∆xα

∂

∂xα

)n

φ (xα) .
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For n ≥ 2

xµ
(
∆xα

∂

∂xα

)n

=

[
xµ,

(
∆xα

∂

∂xα

)n]
commutation

.

Thus
(xµ + ∆xµ) φ (xα) − xµφ (xα + ∆xα)

= −

[
xµ,∆xα

∂

∂xα

]
φ (x)−

−

xµ,
∞∑

n=2

1
n!

(
∆xα

∂

∂xα

)n φ (x)

= −

xµ,
∞∑

n=1

1
n!

(
∆xα

∂

∂xα

)n φ (x)

= −

[
xµ, exp

(
∆xα

∂

∂xα

)
− 1

]
φ (x)

= −

[
xµ, exp

(
∆xα

∂

∂xα

)]
φ (x) .

For the progress of the calculation, we define the 4-mom-
entum operator Pλ, and commutation relation of xµ and Pλ as
follows.

Pλ ≡ i~
∂

∂xλ[
xµ, Pλ

]
≡ −i~δµλ

(9)

and metric ηαβ = diag
[
1 −1 −1 −1

]
.

Using the following (10), the final result is as shown in
(11).

[xi, F (Pi)] = i~
dF
dPi

[x0, F (P0)] = −i~
dF
dP0

.

(10)

(xµ + ∆xµ) φ (xα) − xµφ (xα + ∆xα)

= ∆xµ exp
(
−

i
~

∆xαPα

)
φ (x) .

(11)

Therefore, the equation for spinor function Ψa (x) is

(xµ + ∆xµ) Ψa (x) − xµΨa (x + ∆x)

= ∆xµ exp
(
−

i
~

∆xαPα

)
Ψa (x) .

(12)

3.2 Type 2

After a similar calculation process as in type 1, the equation
that corresponds to (12) is (16).

xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

= xµ
∞∑

n=0

1
n!

(
∆xα

∂

∂xα

)n

φ (x) − (xµ − ∆xµ) φ (x)

= ∆xα
(
xµ

∂

∂xα
+ δ

µ
α

)
φ (x) + xµ

∞∑
n=2

1
n!

(
∆xα

∂

∂xα

)n

φ (x) .

For n ≥ 2

xµ
(
∆xα

∂

∂xα

)n

=

{
xµ,

(
∆xα

∂

∂xα

)n}
anticommutation

.

xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

=

{
xµ,∆xα

∂

∂xα

}
φ (x) +

xµ,
∞∑

n=2

1
n!

(
∆xα

∂

∂xα

)n
 φ (x)

=

xµ,
∞∑

n=1

1
n!

(
∆xα

∂

∂xα

)n
 φ (x)

=

{
xµ, exp

(
∆xα

∂

∂xα

)
− 1

}
φ (x) .

(13)

Note that unlike type 1, anticommutation occurs. There-
fore, for calculation, we need to define the anticommutation
relation of 4-vector x and P as below.

Pλ ≡ i~
∂

∂xλ

{xµ, Pλ} ≡ i~δµλ .
(14)

And using the following (15), the final equation corre-
sponding to (12) of type 1 is the following (16).

{xi,G (Pi)} = −i~
dG
dPi

{x0,G (P0)} = i~
dG
dP0

.

(15)

xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

=

(
∆xµ exp

(
−

i
~

∆xαPα

)
− 2xµ

)
φ (x) .

(16)

To understand the meaning of the right sides of (12) and
(16) for type 1 and type 2, we first briefly review the time evo-
lution operator in quantum mechanics in the next chapter. In
a similar manner, in space-time, the right side of (12) will be
defined as the evolution operator of the type 1 particle and the
right side of (16) will be defined as the evolution operator of
the type 2 particle.

4 Evolution operator

In quantum mechanics, the time evolution operator U from
state | α, t0 〉 to | α, t0; t 〉 is defined as follows.

| α, t0; t 〉 = U (t, t0) | α, t0 〉 .

Determining this time evolution operator is equivalent to
determining the equation of motion for the state of the sys-
tem. If the time evolution operator is as follows, this operator
satisfies the Schrodinger equation.

U (t, t0) = exp
(
−

iH (t − t0)
~

)
i~
∂U (t, t0)

∂t
= HU (t, t0)

i~
∂

∂t
U (t, t0) | α, t0 〉 = HU (t, t0) | α, t0 〉 .
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That is, the Schrodinger equation for the state is estab-
lished as below.

i~
∂

∂t
| α, t0; t 〉 = H | α, t0; t 〉 .

Now let’s discuss type 1 and type 2. Type 1 and type 2
discussed here are free particles, so we can apply the concept
of evolution operator in quantum mechanics.

4.1 Type 1
(xµ + ∆xµ) Ψa (x) − xµΨa (x + ∆x)

= ∆xµ exp
(
−

i
~

∆xαP̂α

)
Ψa (x)

≡ ∆xµU (∆x) Ψa (x) .

(17)

Suppose U (∆x) in (17) is an evolution operator by ∆x in
space-time. Then

Ψ
p
a (∆x) ≡ U (∆x) Ψ

p
a (0)

= exp
(
−

i
~

∆x · P̂
)
Ψ

p
a (0) = exp

(
−

i
~

∆x · p
)
Ψ

p
a (0) .

(18)

Successive evolution by n∆xα = xα can be expressed as
below.

exp
(
−

i
~

∆x · P̂
)
· · · · exp

(
−

i
~

∆x · P̂
)
Ψ

p
a (0)

= exp
(
−

i
~

n∆x · p
)
Ψ

p
a (0) = exp

(
−

i
~

x · p
)
Ψ

p
a (0)

= exp
(
−

i
~

x · P̂
)
Ψ

p
a (0) = U (x) Ψ

p
a (0) .

Therefore, U (x) satisfies the following equation.

Ψ
p
a (x) = U (x) Ψ

p
a (0) . (19)

If we apply the Klein-Gordon operator to (19) and use p
as constant, we get the following result (~ = 1).(

∂µ∂
µ

+ m2
)
Ψ

p
a (x)

=
(
∂µ∂

µ

+ m2
)

e−ix·P̂Ψ
p
a (0)

=
(
∂µ∂

µ

+ m2
)

e−ix·pΨ
p
a (0)

=
(
−pµpµ + m2

)
e−ix·pΨ

p
a (0)

= 0 .

(20)

As you can see from (20), Ψ
p
a (x) is the solution of the

Klein-Gordon equation. And, as discussed above, Ψ
p
a (x) is

spin 1
2 , so Ψ

p
a (x) can be said to be a component of a spinor

that satisfies the Dirac equation.
In summary, for a free particle, type 1 can be interpreted

as a conventional ordinary matter that satisfies the Dirac equa-
tion, and U (x) can be interpreted as an evolution operator. It
is also worth noting that type 1 particles, although their begin-
nings are unusual, are in agreement with existing relativistic
quantum mechanics, indicating some of the validity of the
causal delay.

4.2 Type 2
xµφ (x + ∆x) − (xµ − ∆xµ) φ (x)

=

(
∆xµexp

(
−

i
~

∆xαPα

)
− 2xµ

)
φ (x)

≡ ∆xµVφ (x) .

(21)

We have dicussed that U of type 1 can be interpreted as
an evolution operator. Based on that, we will define V as an
evolution operator of type 2. But unlike U, V is not a unitary
operator, i.e. type 2 particles are broken in unitarity. Never-
theless, type 2 particles have very interesting physical mean-
ings.

5 Properties of type 2 particle

5.1 xµ � ∆xµ

The evolution operator at large x is

∆xµV ' −2xµ (22)

Since V is a linear function of x in (22), the equation that
V must satisfy is the second order differential equation, i.e.
∂α∂βV = 0. Thus, the equation of motion that x must satisfy
can be written in covariant form as

d2xµ

dτ2 = 0 (23)

where τ is the proper time.
Eq. (23) is the classical relativistic equation of motion for

a free particle, not a wave equation. This means that in large
x there is only motion as a particle and no quantum waves.

More discussion is needed about the above. If we take
∆x→ 0 limit on both sides in (16), it is as follows.

xµ
(
φ (x) + ∆xα

∂φ

∂xα

)
− (xµ − ∆xµ) φ (x)

= ∆xµ
{
φ (x) −

i
~

∆xαpαφ (x)
}
− 2xµφ (x)

∆xα
∂φ (x)
∂xα

= −2φ (x) .

∴ φ (x) ∝ exp
(
−2

∆x · x
∆x · ∆x

)
. (24)

As shown in (24), the particle position is very localized. How-
ever, this is the position value in the state where the mo-
mentum is determined. In other words, type 2 particle can
be determined at the same time the position and momentum,
which means that there is no quantum wave phenomenon in
the type 2 particle. Although quantum waves do not exist, it
has a physical meaning because it satisfies the classical equa-
tion of motion.

Eq. (23) holds for an inertial frame in flat spacetime. If a
curved spacetime manifold is locally flat at an arbitrary point
P, (23) always holds at P because ∂

∂xγ gαβ (P) = 0. This means
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that in locally flat manifolds, type 2 particle undergo free-
falling motion with a straight geodesic. That is, type 2 particle
is affected by gravity in the same way as ordinary matter.

5.2 xµ ' ∆xµ

The evolution operator in this case is as follows.

V ' exp
(
−

i
~

x · P̂
)
− 2 . (25)

The first term in (25) is the operator giving the Klein-
Gordon equation. Thesecond term, as discussed in 5.1, means
acceleration, which is related to mass. Thus, (25) can be seen
as an operator that gives an equation that modifies the mass
part of the Klein-Gordon equation. If the modified Klein-
Gordon equation is set as shown in (26) below, f is obtained
as follows (~ = 1).(

∂µ∂
µ + m2 f

)
φp (x) = 0 . (26)

where φp (x) = V (x) φp (0).(
∂µ∂

µ + m2 f
) (

e−ix·P̂ − 2
)
φp (0) = 0 .

∴ f (x) =
e−ix·p

e−ix·p − 2
.

(27)

In the modified Klein-Gordon equation, the mass term is a
complex number.

We will now discuss the internal symmetry of type 2 par-
ticles.

The equation that satisfies φ (x) and φ∗ (x) in (26) is as
follows. (

∂µ∂
µ + m2 f (x)

)
φ (x) = 0(

∂µ∂
µ + m2 f ∗ (x)

)
φ∗ (x) = 0 .

(28)

As can be seen from (28), the equations satisfying φ (x)
and φ∗ (x) are different. This means that the type 2 particles
do not have antiparticles and, as will be seen later, do not have
internal symmetry. To show that the type 2 particles do not
have internal symmetry, the Lagrangian density must be de-
termined. However, defining the Lagrangian density implies
that type 2 is assumed to be a field only locally, although this
is not the case for large x. In addition, the Lagrangian density
should be a locally holomorphic complex Lagrangian.

By the way, the Lagrangian density of a normal complex
scalar field cannot produce (28). Therefore, some process is
required.

First, changing the expression (28) using f ∗ (x) = f (−x)
is as follows. (

∂µ∂
µ + m2 f (−x)

)
φ∗ (x) = 0 .

And x→ −x gives(
∂µ∂

µ + m2 f (x)
)
φ∗ (−x) = 0 . (29)

In (28) and (29), it can be seen that φ (x) and φ∗ (−x) sat-
isfy the same equation. Thus Lagrangian density can be writ-
ten as

L = ∂µφ
∗ (−x) ∂µφ (x) − m2 f (x) φ∗ (−x) φ (x) . (30)

Now consider the following gauge transformations.

φ (x)→ e−iqθ(x)φ (x) , φ∗ (−x)→ eiqθ(−x)φ∗ (−x) .

δφ (x)
δθ (x)

= −iqφ (x) ,
δφ∗ (−x)
δθ (x)

= iqφ∗ (−x)
δθ (−x)
δθ (x)

.
(31)

According to Noether’s theorem, if the action is invariant
under gauge transformations, there is a vanishing divergence
current, whose value is

Jµ = −

 ∂L

∂
(
∂µφ (x)

) δφ (x)
δθ (x)

+
∂L

∂
(
∂µφ∗ (−x)

) δφ∗ (−x)
δθ (x)


= iq

[
φ (x) ∂µφ∗ (−x) − φ∗ (−x) ∂µφ (x)

δθ (−x)
δθ (x)

]
.

(32)

However, the divergence of current in (32) is not zero. And
this means that there is no conserved charge.

Therefore, we can say that Lagrangian density in (30) has
no internal symmetry. In other words, type 2 particles cannot
construct covariant derivatives that satisfy gauge invariance,
which means that type 2 particles do not interact with the U(1)
gauge field.

In addition, since type 2 particles lack an intenal symme-
try, it means that it is a kind of scalar without components,
so SU(2) and SU(3) gauge symmetry cannot be defined. Ac-
cordingly, type 2 particles do not have weak interactions and
strong interactions as well as electromagnetic interactions,
but is connected only by gravity.

5.3 Mass and energy density

Let’s first discuss the mass of type 2 particle.
In the modified Klein-Gordon equation, mass is distribu-

ted in space-time like a wave, and its distribution is deter-
mined by f . Therefore, to find the mass of type 2 particle, we
need to find the integral value for the space. Let t = 0,~p =

(p, 0, 0) be for simplicity. Then f is

f (x) =
eipx

eipx − 2
. (33)

In (33), f diverges at x → ±∞. This is because the ex-
pression (33) holds for xµ ' ∆xµ. Therefore, to find the in-
tegral, we need to define a function value at x → ±∞. As
discussed in section 5.1, type 2 particles do not have a wave
function for large x. Consequently, we can set the boundary
condition f → 0 at x → ±∞. In order for f to converge
at x → ±∞, we need to modify f in (33). By introducing
damping factor ε, modified f is presented as below.

fm =
ei(p+iε)|x|

ei(p+iε)x − 2
. (34)
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Therefore, the mass M of type 2 particle can be defined
as (35). And m is the mass of ordinary matter that satisfies
Klein-Gordon equation.

M2 ≡ m2

∣∣∣∣∣∣
∫ ∞

−∞

ei(p+iε)|x|

ei(p+iε)x − 2
dx

∣∣∣∣∣∣ . (35)

In order to calculate the integral value of (35), the follow-
ing integral of a complex variable must be obtained.∮

dz
ei(p+iε)|z|

ei(p+iε)z − 2
. (36)

The poles and residues are

simple pole z0 = −
(ε + ip)
ε2 + p2 ln 2 .

residue at z0

a−1 =
ei(p+iε)|z|

ei(p+iε)z − 2
·
(
ei(p+iε)z − 2

)
|z=z0

= 2
i (p+iε)
√

p2+ε2

= 2i (for ε → 0) .

The contour of integration is shown in Fig. 4.

                             -R                                                           R

                                                         
                                                            

                                                                                               C

                                                                      -iR

Fig. 4: Contour of integration

∮
dz

ei(p+iε)|z|

ei(p+iε)z − 2

= lim
R→∞

∫ R

−R
dx

ei(p+iε)|x|

ei(p+iε)x − 2
+

∫
C

dz
ei(p+iε)|z|

ei(p+iε)z − 2
= 2πia−1 = 2πi · 2

i
.

(37)

Since the second integral term in (37) is 0 as R → ∞, the
mass value to be obtained is

M2

m2 =
∣∣∣2πi · 2i

∣∣∣ = 2π . (38)

Let’s discuss the energy density. First, the energy density
of type 1, that is, ordinary matter, is as follows in the case of

a complex scalar field.

L = ∂µφ
∗ (x) ∂µφ (x) − m2φ∗ (x) φ (x)

T µλ =
∂L

∂∂µφi
∂λφi − η

µλL = ∂µφ∗∂λφ + ∂µφ∂λφ∗ − ηµλL .

Accordingly, the energy density in the case of a free par-
ticle is as follows.

T 00 =
(
~p2 + m2

)
φ∗φ .

Ignoring the kinetic part:

T 00
type 1 ' m2 |φ1|

2 . (39)

Lagrangian density and energy momentum tensor of type 2
are as follows.

L = ∂µφ
∗ (−x) ∂µφ (x) − m2 f (x) φ∗ (−x) φ (x)

T µλ = ∂µφ∗ (−x) ∂λφ (x) + ∂µφ (x) ∂λφ∗ (−x) − ηµλL .
(40)

However, as discussed earlier, the Lagrangian density of
type 2 is a complex number, so the energy momentum tensor
of the above formula is also a complex number. Therefore,
the above energy momentum tensor cannot be applied to the
physical system as it is.

This issue is intended to find meaning through the follow-
ing discussion. As discussed earlier, type 2 has no internal
symmetry, so there is no short distance interaction. That is,
only long distance interaction (gravity) is possible. However,
at far distances, there is no wave property, but only particle
properties, so type 2 has only meaning as particles in the long
distance interaction. Acting as a particle means that it partic-
ipates in gravity as a particle having a mass M of the type 2
obtained above. In this case, the behavior of the particles as
mass M is equivalent to ordinary matter. Therefore, the en-
ergy density of type 2 can be treated as the energy density of
the scalar field of mass M. Accordingly, the same process as
the energy density of type 1 discussed above is as follows.

T 00
type 2 ' M2 |φ2|

2 . (41)

Consequently, the energy densityratio of type 1 and type 2
particles is as follows.

T 00
type 2

T 00
type 1

'
M2 |φ2|

2

m2 |φ1|
2 . (42)

One thing to note here is that the mass m of ordinary mat-
ter compared in the above formula is the mass of the particle
as a free particle.

In (42), |φ2|
2 / |φ1|

2 is the ratio of mass-independent am-
plitudes, so we can make them equal. Accordingly, the fol-
lowing results can be obtained.

T 00
type 2

T 00
type 1

'
M2

m2 = 2π =
86.3%
13.7%

. (43)
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Since type 1 and type 2 have the same opportunity for gen-
eration in their origin, the number density of the two will be
the same. Therefore, the ratio of the above equation is the
ratio of the energy density of the total amount of type 1 and
type 2 in the universe. The value is within the range of the
energy density ratios of dark matter and ordinary matter that
are currently estimated.

6 Conclusions

The interpretation of the dynamical system with a new con-
cept of causal delay, which originated from the discrete con-
cept of time, gave us a perspective on two different worlds.
For a free particle, type 1 particle can be interpreted as or-
dinary matter that satisfies existing relativistic quantum me-
chanics. This type 1 particle can only have spin 1

2 , which can
explain why the spin of all fermions observed is 1

2 .
Type 2 particle is a matter of a whole new perspective.

This particle does not follow the existing laws of quantum
mechanics. Type 2 is only a classical particle that satisfies
the theory of relativity at a long distance, and has a property
as a kind of field that does not have gauge symmetry at a
short distance. So, these type 2 particles act on gravity in the
same way as ordinary matter, do not interact with light, and
considering their energy density value, it can be interpreted
as dark matter.

Type 2 particles do not have any gauge interactions. And
there is no antiparticle, including itself, so no annihilation oc-
curs. Therefore, direct or indirect detection based on them is
not possible, only indirect verification through gravity. How-
ever, given the local nature of type 2, it is not a point-like
particle, so self-interaction through collision seems to be pos-
sible.

Received on July 24, 2020
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On the Electron Pair, the Single Bond C-C Rotational Energy Barrier
and Other Molecular Mechanisms
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To find evidence of the electron pair has proven to be a very difficult task. Bader et al.
tried to unsuccessfully find evidence of the electron pair in the topological analysis of
the Laplacian of the electron density of molecules. By using electron localization func-
tions, Silvi et al. pointed out where these pairs might be in the molecule and represented
them as attractors. Still, to locate the electron pair does not give answers to different
molecular mechanisms. For instance, the mechanism of hindered rotation about the
carbon-carbon single bond in ethane, which is of great interest and controversy. This
phenomenon is not yet explained by Silvi’s most advanced molecular model (state of
the art). A new alternative uses the relationship between the area of the electron density
and the energy of the bond. This approach also provides the electron pair localization.
Furthermore, by allowing the magnetic momenta of the bonding electrons to interact,
an explanation of the rotational barrier appeared straightforwardly. Also, the model
presented in this paper find bonding electrons not found by Silvi’s model. The results
agree and/or complement the state of the art.

1 Introduction

The valence theory of Lewis remains the basis for most mod-
ern ideas on the chemical bond. According to Lewis struc-
tures, there are bonding electron pairs in the valence shell
of an atom in a molecule, and there are nonbonding electron
pairs or lone pairs in the valence shell of many atoms in a
molecule. From the topological analysis of the electron den-
sity, Bader et al. had extracted useful information about the
bonding in a molecule. But, not much progress was made to
reveal the location of these electron pairs [1].

According to Silvi et al. [2], the electron density alone
does not easily reveal the consequences of the Pauli exclusion
principle on the bonding. The work of several authors have
produced a series of electron localization functions, which at-
tempt to measure the Pauli repulsion by considering the Fermi
hole. Hence, an alternative interpretation of these electron lo-
calization functions is to consider a system of fermions and
a system of bosons with identical densities. The ground-state
local kinetic energy of the non-interacting bosonic system is
a lower bound to the local kinetic energy of the fermionic
one. The excess local kinetic energy due to the Pauli princi-
ple is just the difference between the two. Where electrons are
alone or form pairs of opposite spins, the Pauli principle has
little influence on their behavior and they almost behave like
bosons. In such regions the excess local kinetic energy has a
low value. This identifies regions called attractors, every at-
tractor consists of two electrons. There are three types: point,
core and ring attractors. In this way, Silvi et al. is capable to
locate and classify the electron pairs in organic molecules.

Nevertheless, in order to have this “non-interacting boso-
nic system”, the magnetic momenta of the pairs of opposite
spins are necessarily cancelling each other. Therefore, if the

rotational energy barrier for the single bond in ethane has a
magnetic origin, Silvi’s model would not be able to explain it.
The need to understand this molecular mechanism had driven
chemists away from Silvi’s most advanced model to semi-
empirical ones. Currently, the origin of a rotational barrier in
a C-C single bond has a wide range of explanations. The bar-
rier is often attributed to: 1) torsional strains in the molecule,
2) steric strains, 3) charge transfer, exchange or electrostatic
and 4) hyperconjugative interactions [3].

This is of a foremost interest because it has been found
that the rotational speed of the bond reduces in the presence
of an external magnetic field [4].

In the model used in this paper∗, covalent bonds, lone
pairs and core electrons will be detected by using the struc-
tures observed in Fig. 1, namely: the two separated spheres
(ts), the torus (t) and the sphere in a sphere (ss) [5]. In the case
of a single C-C bond, the magnetic momenta of the two bond-
ing electrons are left to interact between each other. The C-C
double bond would be two single bonds that consequently
are locked for rotation. The C-C triple bond presents a lone
pair (a torus) around its double bond structure and benzene
presents interacting toroidal lone pairs, which are responsible
for aromaticity.

Full count and location of the electron pairs forming dif-
ferent bonds, as well as, lone pairs is achieved. This was
comparable or better than Silvi’s model (the state of the art)
[2]. The model/method presented in this paper: 1) confirmed
Silvi’s model electron count for certain molecules, 2) pro-
duced more information about missed electrons, not account-
ed by Silvi’s model and shed light on the possible mechanism
behind rotational barrier and aromaticity.

∗which has already been described in [5].
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Fig. 1: Observables structures of the electron. The arrow represents
its magnetic moment

2 Experimental

After observing the Laplacian of the electron density contour
map of different hydrocarbon molecules, it was easy to iden-
tify C-C and C-H bonds and cut their silhouettes printed on
paper. These silhouettes were weighted. The C-C or C-H
bond lengths were used to calibrate the area measured in each
bond. By this way, the bond area was calculated and it is re-
ported in pm2. An example of this process is in Fig. 4 for
the C-H bond, and in Fig. 8 for the C-C bond. Then, these
areas were correlated with their respective bond energies. A
linear correlation was possible after dividing the bond area
by a whole number, n. This whole number is interpreted as
the number of electrons participating in the bond and it is re-
ported on the right side of the molecule formula. These are
observed in Figs. 2 and 3. This method has been sufficiently
described in [5] and, in this paper, it was applied to the hydro-
carbon molecules: ethane, ethene, ethyne and benzene. The
contour map of the Laplacian of the charge density for C-H
and C-C bonds in ethane, ethene and ethyne molecules are
in [6]. Benzene C6H6 in [7] and C2 is in [8].

2.1 Electron count

Fig. 2 shows that with n very close to 2, the C-H bond area
linearizes against the bond energy in the molecules: ethane
C2H6, 2; benzene C6H6, 2.01 and ethyne C2H2, 2. In the case
of ethene C2H4 it is 1.824. Fig. 2 shows that n is exactly 2 in
the case of C-C ethane and benzene, 8 in the case of dicarbon
and 4 in the case of C-C ethyne. Ethene, however, presents
2.6 for the C-C bond in the plane of the molecule and 4 in the
plane perpendicular to it and at the C-C axis.

The number of electrons involved in the C-H bond was
very close to 2 regardless the class of C-H bond. The C-H

Fig. 2: Bond area vs. bond energy for C-H bonds in different
molecules.

Fig. 3: Bond area vs. bond energy for C-C bonds in different
molecules.

bond that was far from this behavior was C-H ethene with
1.824. This deviation will be further discussed later. Thus,
two electrons are involved in the C-H bond in the cases of
ethane, ethyne and benzene.

Given that Fig. 3 provides the number of electrons in-
volved in each C-C bond for these molecules, one is ready
to do the full count of electrons in each molecule.

2.1.1 Ethane, C2H6

Figs. 2 and 3 inform that the C-H and C-C bonds have two
electrons each. Hence, as it is observed in Fig. 4a, ethane
has the expected electron count for each bond. This elec-
tron distribution coincides with the one presented by Silvi et
al. (Fig. 4b) where the black circles are point attractors with
two electrons each. Silvi’s model put these attractors at the
mid-point of the C-C bond and towards the hydrogen atom in
the C-H bond. This is probably due to electronegativity dif-
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Fig. 4: a) Contour map of the Ethane molecule and its electron
count. The green line shows how the C-H bond was cut. The C-C
bond was also cut accordingly. Reprinted and adapted with permis-
sion from [6]. Copyright (1996) American Chemical Society. b)
Silvi’s et al. structure from [2]. It presents point attractors (black
circles) alongside C-C and C-H bonds. It also shows core attrac-
tors (open circles) on the carbon atoms, used with permission of the
publisher.

ferences between the bonding atoms. He also localized core
attractors (open circles) on the carbon atoms. The model pre-
sented in this paper does not have that.

2.1.2 Rotational barrier

The ethane molecule presents one of the long standing prob-
lems in physical chemistry. This molecule has an energy bar-
rier to its rotation. This barrier produces two types of con-
formers: the eclipsed and the staggered (see Fig. 5). The en-
ergy barrier between them is about 12 kJ/mol. Also, the C-C
bond contracts from 153 pm in the staggered to 130 pm in the
eclipsed conformer [3].

In between several explanations, the most favored ones
are: 1) steric hindrance and 2) hyperconjugation. Although
the steric effect is usually defined as the repulsion between
C-H bonds or vicinal H atoms in the eclipsed conformation,
the difference between torsional and steric strain is not clear.
This is because they are not explicitly associated with a well-
defined physical property.

Within the framework of natural bond orbital analysis,
NBO, hyperconjugation is considered to be the source of the
conformational preference of the molecule, bymeans ofσC−H

- σC−H∗ vicinal interactions, rather than the electrostatic con-
tribution or Pauli repulsion.

Most other explanations in the literature are given either
in terms of orbital interactions or based on an energetic anal-
ysis of the problem. The discussion is far from over [3].

In the model presented in this paper, the electron is ob-
served as the size of the whole bonding region. Given that the
electron is also a tiny magnet, the interaction of the magnetic
momenta between the two bonding electrons of the C-C bond
is directly the cause of this torsional barrier and the differ-
ences in the C-C length between conformers.

Fig. 5 presents the two configuration and the magnetic

momenta of the two bonding electrons. In the eclipse con-
former, these magnetic momenta are at an angle of 180 de-
grees (maximum magnetic attraction). This shortens the C-C
bond to 130 pm. Upon rotation of one of the carbon atoms,
the angle between electron’s magnetic momenta decreases.
At 180 − 60 = 120◦, a combination of distance between mo-
ments and the angle vanished this magnetic interaction. This
lengthens the C-C bond (minimum magnetic attraction) in the
staggered conformer.

The equation that describe the interaction between the two
electron magnets is,

F =
3µ0

4π
m2

e

r4 cos θ (1)

where µ0 is the permeability of the free space, me is the elec-
tron magnetic moment, r is the distance between magnetic
moments and θ is the angle between them. Mimicking the
magnitude of the Ehrenfest forces acting on the C atoms,
Fe(C) for diferent C-C distances presented in [3]. The change
in magnetic force, equation (1), needed to explain the barrier
at different C-C distances is presented in Fig. 6.

Given that there are no other energy barrier, it is believed
that the bond rotation occurs in step between the carbon atoms
in the bond. This means that once one carbon reached the
weakening angle, the other rotates to reach 180◦ again. This
mechanism would be consistent with a reduction in the rota-
tion speed in the presence of an external magnetic field, which
has been experimentally detected [4]. Silvi’s model is simply
incapable to reproduce this interaction because the bonding
electrons’ magnetic momenta are not free to interact in this
way.∗

2.2 Ethene, C2H4

Fig. 7a shows so far, the electron count extracted from the re-
sults in Figs. 2 and 3. Since 4 (1.824) + 2.6 ≈ 10, a deficit of
two electrons remains unexplained. However, the C-C elec-
tron count in the plane perpendicular to the molecular plane
at the C-C axis gives exactly 4 (see Figs. 3 and 7b). This is,
even though no indication of localization in this region is ob-
served and these 4 electrons look to be in the same region of
space (fused). This count probably means that the C-H elec-
tron count on the molecular plane, 1.824 is 2 in the plane per-
pendicular to it. Thus, a full electron count of this molecule
is obtained. Coincidently, Silvi’s model presents same elec-
tron count and localization. Two point attractors (4 electrons)
at the plane perpendicular to the molecular plane for ethene:
one over and the other under the molecular plane and point
attractors (2 electrons each) for the four C-H bonds in the
molecular plane (see Fig. 7c).

The C-C single bond results, already described for ethane,
provide a way to understand the double bond. Simply, after

∗they are cancelling each other, completely coupled to obey the Pauli
principle.
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Fig. 5: Eclipsed (top) and Staggered (down) ethane conformers. The
eclipsed conformer present the maximum magnetic attraction and
shorter C-C bond length. Whereas, the staggered conformer has the
lowest magnetic attraction and the longest C-C bond length. The
extra projection shown down right is to present the angle between
the two bonding electrons magnetic momenta in the staggered con-
former. All distances are in pm.

Fig. 6: Magnetic force between carbon atoms in the C-C bond for
different C-C distances. The insert present the force values, distance
between magnetic dipoles and angle assigned to each C-C distance.
The integral of the curve is 12 kJ/mol.

the first single bond occurs, a second single bond in the C-C
bond will lock any possibility for rotation. This is concurrent
in both models presented here. Furthermore, Silvi’s model
does not present a point attractor in the line between the two
carbons. Thus, the double bond looks like two out of line
sigma bonds.

Fig. 7: Contour map of the Ethene molecule and its electron count.
The C-C bond electron count at the plane of the nuclei (a) is different
from the count at the perpendicular plane (b). The green line shows
how the C-C bond was cut. Reprinted (adapted) with permission
from [6]. Copyright (1996) American Chemical Society. c) Silvi’s
et al. structure from [2] used with permission of the publisher.

Fig. 8: a) Contour map of the ethyne molecule and its electron count,
there is a lack of two electrons. The green line shows how the C-C
bond was cut. b) These two electrons are fused in a toroidal lone
pair around the C-C bond. Reprinted (adapted) from [6]. Copy-
right (1996) American Chemical Society. c) This structure has been
observed in the molecular electrostatic potential of ethyne. This is
from [9] used with permission of the publisher. d) Silvi’s et al. struc-
ture from [2] used with permission of the publisher.

2.3 Ethyne, C2H2

Fig. 2 presents that C-H bond has two electrons in ethyne,
Fig. 3 shows that the C-C bond has 4. Therefore, Fig. 8a
presents a lack of two electrons. These two electrons will
be bonded outside of the ethyne’s C-C bond and at its mid-
point, completely fused, producing a lone pair with a toroidal
shape (see Fig. 8b). This has been observed in the molecular
electrostatic potential of this molecule (see Fig. 8c [9]). This
toroidal shape has also been noticed as a “ring attractor” in the
electron localization function, η(r), of this molecule in [6].
Concurrently, Silvi’s structure also presents this ring attrac-
tor (2 electrons) and the point attractors for the C-H bonds,
see Fig. 8d. But, it misses the other four electrons in the C-
C bond. Fig. 8b depicts the complete electron count for the
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Fig. 9: a) Contour map of the Benzene molecule and its electron
count. There is a lack of six electrons. These electrons are fused in
two lone pairs at both sides of the C6 ring. The green line shows how
the bonds were cut. This is from [7] used under Creative Commons
license. b) Silvi’s et al. structure from [2] used with permission of
the publisher.

ethyne molecule.
The evidence shows that the triple bond is a double bond

with a lone pair. Also, the availability of two more bond-
ing electrons would make this lone pair to disappear into a
quadruple bond, which has been observed in dicarbon [5].

2.4 Benzene, C6H6

Figs. 2 and 3 show that the C-H and C-C bond in benzene
have two electrons each. Fig. 9a presents the electron count
for benzene. Silvi’s structure (Fig. 9b) also depicts the same
C-H and C-C electron count. None of these structures inform
the whereabouts of the six remaining electrons. It is believed
that they will go to two fused toroids (three electrons each) on
both sides of the C6 molecular plane. This is because that has
been observed in the molecular electrostatic potential of ben-
zene [9] (see Fig. 10). The aromatic stabilization energy for
benzene is 120 kJ/mol [10], which is comparable to a weak
chemical bond (for example F-F with 155 kJ/mol [5]). Thus,
it is believed that these lone pairs act as such.

2.4.1 Aromaticity

In the customary view of aromaticity, an external magnetic
field induces a molecular plane ring current in the delocal-
ized π electrons of the aromatic ring. This current will pro-
duce its own magnetic field, which will go against the ex-
ternal magnetic field. This effect will deshield protons out-
side of the molecular plane. According to Fig. 10, there are
three electrons in each toroidal lone pair; two of them are
magnetically coupled and the third one will be uncoupled.
The same structure occurs on the other side of the molec-
ular plane. Therefore, they will magnetically attract across
such plane (see Fig. 10). When an external magnetic field is
imposed on the benzene molecule, these toroidal lone pair

structures will align their magnetic momenta against the ex-
ternal magnetic field naturally resisting to lose its original and
more stable configuration. As in the customary explanation,
this effect will deshield the protons outside of the molecular
plane.

Fig. 10: Molecular electrostatic potential of benzene. The arrows
depict the coupling of the three electrons in each lone pair. When an
external magnetic field B is imposed, the magnetic moments of the
two odd electrons aligned against it as shown.This is from [9] used
with permission of the publisher.

3 Conclusions

A new experimental method to find the number of electrons
shared in a chemical bond has been applied to selected hydro-
carbon molecules. The information obtained is comparable
and/or complements the state of the art. The total distribu-
tion of electrons in four fundamental hydrocarbons has been
achieved. The long standing mystery of the ethane rotational
barrier has been explained. The interaction between bonding
electron magnets presents itself as fundamental to understand
organic molecules.
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Quantum Electrodynamics (QED) is considered the most accurate theory in the his-
tory of science. However, this precision is limited to a single experimental value: the
anomalous magnetic moment of the electron (g-factor). The calculation of the electron
g-factor was carried out in 1950 by Karplus and Kroll. Seven years later, Petermann
detected and corrected a serious error in the calculation of a Feynman diagram; how-
ever, neither the original calculation nor the subsequent correction was ever published.
Therefore, the entire prestige of QED depends on the calculation of a single Feynman
diagram (IIc) that has never been published and cannot be independently verified.

1 Introduction

According to the Dirac equation, the value of the magnetic
moment of the electron should be exactly one Bohr magne-
ton. In 1947 it was discovered that the experimental value of
the magnetic moment of the electron presented an anomaly
of 0.1% with respect to the theoretical value [1] [2]. This
anomaly was called the electron g-factor

µe = gµB = g
e~

2me
. (1)

Schwinger carried out the first theoretical calculation of
the electron g-factor obtaining a value very similar to the ex-
perimental value. This value is known as the Schwinger fac-
tor [3]

g = 1 +
α

2π
= 1.001162 . (2)

According to Quantum Electrodynamics (QED), the theo-
retical value of the electron g-factor is obtained by calculating
the coefficients of a number series called the Dyson series [4].
When Feynman, Schwinger, and Tomonaga received the 1965
Nobel Prize for the development of QED, only the first two
coefficients in the series had been calculated. The rest of the
coefficients in the Dyson series were calculated many years
later with the help of supercomputers

g = C1

(
α

π

)
+ C2

(
α

π

)2
+ C3

(
α

π

)3
+ C4

(
α

π

)4
+ C5

(
α

π

)5
... (3)

Each coefficient in the series requires the calculation of an
increasing number of Feynman diagrams. The first coefficient
in the Dyson series is the Schwinger factor and has an exact
value of 0.5. The second coefficient was calculated in 1950
by Karplus and Kroll [6], who obtained a result of -2.973.
This result was corrected seven years later by Petermann [8],
who obtained a result of -0.328, almost 10 times lower than
the previous calculation

g = 1 +
1
2

(
α

π

)
− 0, 328

(
α

π

)2
= 1, 0011596 . (4)

The error was found in the calculation of the Feynman
diagram IIc. According to the Karplus and Kroll original cal-
culation, the value of diagram IIc was -3.178 while in the
Petermann correction the value of diagram IIc was -0.564.

Fig. 1: Feynman diagram IIc.

The entire prestige of QED is based on its impressive level
of precision of the electron g-factor. Currently QED allows
the achievement of the electron g-factor with a precision of
12 decimal places of the theoretical value with respect to the
experimental value

• 2008 Gabrielse’s experimental value [13]:

1.001 159 652 180 73(28) ;

• 2018 Kinoshita’s theoretical value [14]:

1.001 159 652 182 032(720) .

The calculation of the electron g-factor is based on the
calculation of the second coefficient of the Dyson Series. The
second coefficient of the Dyson series is based on the calcu-
lation of the Feynman diagram IIc. Therefore, the calculation
of the Feynman diagram IIc performed by Karplus and Kroll
in 1950 [6] can be considered the most important calculation
in the history of modern physics.

Surprisingly, the original calculation of this diagram IIc
turned out to be wrong and was corrected seven years after its
publication. Inexplicably, both the original Feynman diagram
IIc calculation and the subsequent correction have never been
published, so the most important calculation in the history of
modern physics cannot be independently verified.
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2 Original calculation

2.1 Karplus and Kroll’s paper

In 1949, Gardner and Purcell [5] published a new experimen-
tal result for the electron g-factor of 1.001146. In response,
Karplus and Kroll performed the necessary calculations to
obtain the second coefficient in the Dyson series.

In 1950, Karplus and Kroll [6] published a value of -2.973
for the second Dyson series coefficient and a new theoretical
value of 1.001147 for the electron g-factor, in good agreement
with the experimental data

g = 1 +
α

2π
− 2.973

(
α

π

)2
= 1.001147 . (5)

The paper, published February 14 in the Physical Review
Journal 77, consists of 14 pages full of complex mathemat-
ical calculations.

On the second page of the document, the authors indicate
that to obtain the coefficient, it is necessary to calculate 18
Feynman diagrams grouped in five groups (I, II, III, IV and
V). However, on pages 3 and 4, they argue that groups III,
IV and V are not necessary. Therefore, it is only necessary
to calculate seven Feynman diagrams, identified as I, IIa, IIb,
IIc, IId, IIe, IIf. A lot of calculations are done between pages
4 and 11 that only serve to show that diagrams IIb and IIf
are not necessary either. Therefore, it is only necessary to
calculate five Feynman diagrams (I, IIa, IIc, IId, IIe).

Fig. 2: Feynman diagrams.

The calculation of diagrams IIe (0.016) and IId (-0.090)
are performed on pages 11 and 12 respectively. It follows
that [6] “The expressions for I, IIa and IIc become succes-
sively more complicated and very much more tedious to eval-
uate and cannot be given in detail here”. In other words, the
complete calculation of three of the five diagrams was never

published. On page 13, the results of the three remaining di-
agrams are shown (I = -0.499, IIa = 0.778 and IIc = -3.178).
Finally, page 14 of the paper presents the“Summary of Re-
sults” with the results of each of the five diagrams

C2 = I + IIa + IIc + IId + IIe = −2, 973 . (6)

I IIa IIc IId IIe Total
-0.499 0.778 -3.178 -0.090 0.016 -2.973

Table 1: Values of the five Feynman diagrams.

From the analysis of the results, it is evident that diagram
IIc is the dominant diagram. Diagrams I and IIa are less rele-
vant and practically cancel each other out. Diagrams IId and
IIe are the only two diagrams whose calculations are included
in the paper; however, their values are completely irrelevant.

The calculation of Feynman diagram IIc is made up of
four components:

IIc = −
323
24

+
31
9
π2 −

49
6
π2 ln(2) +

107
4
ζ(3) . (7)

Constant π2 π2 ln 2 ζ(3) Total

-13.458 33.995 -55.868 32.153 -3.178

Table 2: Value of the four components of Feynman diagram IIc.

The four components of IIc have abnormally high values
(-13, 34, -55 and 32) which surprisingly compensate for each
other, resulting in -3,178, an order of magnitude lower. It
is not possible to say anything more about the calculation of
diagram IIc because the complete calculation was never pub-
lished.

The authors indicate that [6]: “The details of two inde-
pendent calculations which were performed so as to provide
some check of the final result are available from the authors”.
That is, the authors affirm that the calculations were carried
out independently by two teams who obtained the same re-
sult, as a guarantee that the calculations were correct.

2.2 New experimental value

Six years after the publication of the Karplus and Kroll pa-
per, Franken and Liebes [7] published new and more precise
experimental data that showed a very different value for the
electron g-factor (1.001165). This value was higher than the
Schwinger factor, so the value of the second coefficient cal-
culated by Karplus and Kroll not only did not improve the
Schwinger factor, but made it worse. With the new experi-
mental data, the value of the second coefficient in the series
should have been +0.7 instead of -2.973.
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Karplus and Kroll admitted that two independent calcu-
lations had not been carried out, so it was possible that there
were errors in the calculations. According to Kroll [15]: “Ka-
rplus and I carried out the first major application of that pro-
gram, to calculate the fourth order magnetic moment, which
calculation subsequently turned out to have some errors in it,
which has been a perpetual source of embarrassment to me,
but nevertheless the paper I believe was quite influential. (...)
The errors were arithmetic (...) We had some internal checks
but not nearly enough. (...) it was refereed and published and
was a famous paper and now it’s an infamous paper”.

The history of this correction is complex and confusing.
We will now try to reconstruct this story from the published
papers and quotes from its protagonists.

3 The history of the correction

3.1 Petermann’s numerical calculation

Petermann was the first person to identify an error in the orig-
inal calculation of Karplus and Kroll. He performed a numer-
ical analysis of the five Feynman diagrams and he found that
the solution of diagram IIc was clearly wrong, since its value
was outside the limits. The rest of the diagrams were within
limits [9]: “The numerical results for the terms I, IIa, IIc, IId,
IIe in the work by Karplus and Kroll have been checked by
rigorous upper and lower bounds. Whereas every other term
fell well between these bounds, agreement could not be ob-
tained for diagram IIc. (...) The numerical value for this term
has been found to satisfy IIc = -1.02 +/- 0.53”.

Petermann published a second paper where he adjusted
his calculations [10]: “the diagram IIc is found to satisfy IIc
= -0.60 +/- 0.11 in contradiction with the value -3.18 given
by the previous authors”.

Between the publication of these two papers, Petermann
communicated privately to Sommerfield the result of another
calculation [11]: “Note added in proof. Petermann has placed
upper and lower bounds on the separate terms of Karplus and
Kroll. He finds that their value for IIc does not lie within the
appropriate bounds. Assuming the other terms to be correct,
he concludes that the result is -0.53 +/- 0.37”.

Petermann worked for three months following a numeri-
cal methodology that allowed him to narrow the margin of er-
ror in diagram IIc. Surprisingly, fourteen days after his third
numerical calculation, he made an unexpected change in his
methodology and published the exact analytical calculation,
with no margins of error.

The articles published by Petermann on the calculation of
the Feynman diagram IIc are summarized in Table 3.

3.2 Sommerfield and the Green’s functions

After the publication of the new experimental value by Fran-
ken and Liebes [7], Schwinger commissioned a 22-year-old
student named Sommerfield to redo the Kroll and Karplus

Date IIc Method Publication
28/5 -1.02 +/- 0.53 Numerical Nuclear Phys. 3
1/7 - 0.53 +/- 0.37 Numerical Phys. Rev. 107,

Note added in
proof. Private
comm. with
Sommerfield

3/8 -0.60 +/- 0.11 Numerical Nuclear Phys. 5
17/8 -0.564 Analytical Helvetica Phys-

ica Acta 30

Table 3: Petermann’s publications.

calculations. Schwinger proposed using his own method bas-
ed on Green’s functions instead of using Feynman diagrams.

According to Sommerfield’s testimony [16]: “Julian as-
signed us three problems, one of which involved the anoma-
lous magnetic moment (...). At my meeting with him, he sug-
gested that I continue the calculation of the anomalous mag-
netic moment to the next fourth order (...). Schwinger wanted
me to use the other method, while respecting gauge invari-
ance at every step. Many years later Roy Glauber told me
that the faculty was not entirely happy that a graduate stu-
dent had been given such a problem”.

In May 1957, Sommerfield sent a two-page paper to the
Physical Review Journal where he published his results [12]:
“The fourth-order contribution to the moment is found to be
−0.328 (..) Thus the result is 1.0011596”. This new theoreti-
cal value of the electron g-factor was in good agreement with
the new experimental value of Franken and Liebes.

As Schwinger states [18]: “Interestingly enough,although
Feynman-Dyson methods were applied early [by Karplus and
Kroll], the first correct higher order calculation was done by
Sommerfield using [my] methods”.

The second coefficient of the Dyson series calculated by
Sommerfield consisted of four components, the same as the
original result for Karplus and Kroll, but with very different
values:

[K&K]

C2 = −
2687
288

+
125
36

π2 − 9π2 ln(2) + 28ζ(3) = −2.973 . (8)

[Sommerfield]

C2 =
197
144

+
1

12
π2 −

1
2
π2 ln(2) +

3
4
ζ(3) = −0.328 . (9)

Sommerfield’s paper does not includethe calculations per-
formed, but the author states that [11]: ““The present calcu-
lation has been checked several times and all of the auxiliary
integrals have been done in at least two different ways”. As a
guarantee that the calculations were correct.
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Const. π2 π2 ln(2) ζ(3) Total

K&K -9.329 34.269 -61.569 33.656 -2.973

Pet. 1.368 0.822 -3.421 0.901 -0.328

Diff. 10.697 -33.447 58.148 -32.754 2.645

Table 4: Comparative components of C2.

In 1958, Sommerfield published his g-factor calculations
in the Annals of Physics [12] as part of his doctoral thesis.
If we analyze his extensive 32-page paper, we verify that he
used Green’s functions instead of Feynman diagrams. For this
reason, the calculation of the enigmatic Feynman diagram IIc
does not appear in this paper.

In the third volume of “Particles, Sources, and Fields”
published in 1989 [3], Schwinger devoted more than 60 pages
to a detailed calculation of the second coefficient of Dyson
series getting exactly the same result, but, once again, using
Green’s functions instead of Feynman diagrams.

In his 1957 paper, Sommerfield also states that [11]: “The
discrepancy has been traced to the term I and IIc of Karplus
and Kroll”. This statement about the origin of the error cannot
be deduced from Sommerfield’s calculations, since he used
Green’s functions instead of Feynman diagrams. So Som-
merfield had to receive this information from other sources
(Petermann, Karplus or Kroll).

3.3 Petermann’s definitive correction

The definitive solution to the problem was presented in 1957
by Petermann in a paper published in the Swiss journal Hel-
vetica Physica Acta [8]. Although the paper was signed by a
single author, actually the result was obtained by consensus
between the results of the Petermann’s numerical analysis,
the Sommerfield calculation of C2 using Green’s functions
and the correction of the Feynman diagrams carried out by
Kroll himself. Petermann acknowledges that the result was
obtained by consensus [8]: “The new fourth order correction
given here is in agreement with: (a) The upper and lower
bounds given by the author. (b) A calculation using a differ-
ent method, performed by C. Sommerfield. (c) A recalculation
done by N. M. Kroll and collaborators”.

The article was signed by a single author due to an in-
ternal conflict between the researchers. As Sommerfied re-
calls [16]: “In the meantime Schwingerian Paul Martin had
gone to the Niels Bohr Institute in Copenhagen and had spo-
ken to Andre Petermann, a postdoc with the Swedish theoreti-
cian Gunnar Kallen. Martin told Petermann about my work
(...) In the end, however, after both of our calculations were
completely finished they were in agreement with each other
but not with Karplus and Kroll. We agreed to cite each other’s
work when published. However, Schwinger and Kallen had
had a somewhat acrimonious discussion (...) and Kallen had

forbidden Petermann to mention my work. Petermann’s apol-
ogy to me was profuse”.

The Petermann final result for the electron g-factor was
identical to the Sommerfield result published three months
earlier

C2 =
197
144

+
1
12
π2 −

1
2
π2ln(2) +

3
4
ζ(3) = −0.328 . (10)

In the paper, Petermann states that: “We have performed
an analytic evaluation of the five independent diagrams con-
tributing to this moment in fourth order. The results are the
following (I = -0.467, IIa = 0.778, IIc = -0.564, IId = -0.090,
IIe = 0.016, Total = -0.328). Compared with the values in
their original paper by Karplus and Kroll, one can see that
two terms were in error: I differs by 0.031 and IIc differs by
2.614”.

I IIa IIc IId IIe Total

-0.467 0.778 -0.564 -0.090 0.016 -0.328

Table 5: Corrected values of the five Feynman diagrams.

Comparing the results of the calculations of the Feynman
IIc diagram carried out by Karplus and Kroll with the Peter-
mann calculations we observe the following:

[K&K]

IIc = −
323
24

+
31
9
π2 −

49
6
π2ln(2) +

107
4
ζ(3) (11)

[Petermann]

IIc = −
67
24

+
1
18
π2 +

1
3
π2ln(2) −

1
2
ζ(3) (12)

The calculation of each of the four factors in diagram IIc
is shown in the following table:

Const. π2 π2 ln(2) ζ(3) Total

K&K -13.458 33.995 -55.868 32.153 -3.178

Pet. -2.791 0.548 2.280 -0.601 -0.564

Diff. 10.667 -33.447 58.148 -32.754 2.614

Table 6: Comparative components of Feynman diagram IIc.

The corrections are huge, one or two orders of magnitude
for each component of diagram IIc. We cannot know the ori-
gin of these discrepancies because the correction calculations
were also not published.

4 Summary

The calculation of the Feynman diagram IIc can be consid-
ered the most important calculation in the history of mod-
ern physics. However, the history of this calculation is sur-
rounded by errors and inexplicable coincidences.
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• The original calculation of the Feynman diagram IIc
published in 1950 was wrong.
• Karplus and Kroll stated that the calculation had been

performed by two teams independently. This statement
was made to give guarantees about the validity of the
calculations, and yet it turned out to not be the case.
• Despite having published a wrong result, the prestige

of Karplus and Kroll was not affected at all. On the
contrary, both enjoyed brilliant careers full of awards
and recognition for their professional achievements.
• The Karplus and Kroll miscalculation was consistent

with the experimental value previously published by
Gardner and Purcell, even though that experimental va-
lue was also wrong.
• The error in the calculation was not reported until seven

years after its publication.
• The error in the calculation was detected just when a

new experimental value was published by Franken and
Liebes. The corrected theoretical value also coincided
with the new experimental value.
• Neither the original calculation of the Feynman dia-

gram IIc nor its subsequent correction has been pub-
lished to date.

Received on September 7, 2020
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A Model of the Universe Expanding at a Constant Speed

Rostislav Szeruda
Roznov p.R. 75661, Czech Republic. E-mail: rostislav.szeruda@seznam.cz

This article deals with the possibility of finding an alternative model to the expanding
universe model which can be in accordance with our astronomical observations. This is
considered an easy but not usual model of closed universe with k = 1, Λ = 0 and q = 0
which provides that mass of this universe is not constant but stepwise increasing.

1 Basic ideas and existing work

This article is based on four basic ideas:

1. Model of the universe expanding at a constant speed
[3]. Such a model of the universe is not by itself con-
sistent with observation. We observe that the rate of
expansion of our universe is accelerating.

2. The idea that the universe may be a black hole is dealt
with in [2].

3. The universe was born from a single quantum of ener-
gy. The mass of the universe, its size, and the instant
speed of particles with a non-zero rest mass are inter-
related. The idea was inspired by the book [1].

4. The relative particle size shrinking. This effect makes
it seem to us that the universe is not expanding at a
constant speed, but that the speed of its expansion is
increasing. This idea is new.

2 Constant speed expanding universe

We assume that there is no difference between what our uni-
verse is and how it appears to us. But is that true? Let us
imagine that we are in a room the walls of which are expand-
ing, and we are shrinking just as quickly at the same time.
How would this room seem to us?

Let us consider a universe expanding at a constant rate.
The elementary particles try to move at the maximum possi-
ble speed. The speed of expansion of the universe is a lim-
itation of the instantaneous velocity of the elementary parti-
cles within. Thus, particles with zero rest mass (photons) can
move as fast as the universe expands:

ȧ ≡ c (1)

where:

ȧ – speed of the universe expansion

c – speed of light in vacuum.

Further, let’s suppose that particles with non zero rest
mass have a tendency to move at the speed of light in va-
cuum too but due to their non zero rest mass they are not able
to achieve that speed. The more their speed gets closer to the
speed of light in vacuum, the higher their mass becomes and
prevents them from moving faster.

Let’s have a model of the universe described by Fried-
mann equations:

3
( ȧ
a

)2
+

3kc2

a2 − Λc2 = 8πGρ (2)

ä
a

= −
4πG
3c2

(
ρc2 + 3p

)
+

Λc2

3
(3)

where:

G – gravitational constant
ρ = ρ(t) – matter density in universe
p = p(t) – pressure in the universe
a – expansion factor of the universe
ä – acceleration of the universe expansion (ä = 0 for the

model)
k – parameter of the universe curvature
Λ – Einstein cosmological constant.

Let’s consider a Riemann space with a positive curvature,
where:

1. k = 1.
2. Λ = 0.

The Friedmann equations are simplified to:

ρ =
3c2

4πGa2 (4)

p = −
1
3

c2ρ . (5)

The density of the universe is then inversely proportional
to the square of the expansion factor a. It means that the
linearly expanding universe is possible only on the condition
that its mass is not constant but it rises proportionally to a.
The more matter the universe contains, the larger it becomes
and vice versa.

For a closed universe (k = 1), we can call the expansion
factor a as the radius of the universe. Its volume is an elemen-
tary inter-sphere with surfaces 4πa2 sin2 ψ and its thickness
a dψ (0 ≤ ψ ≤ π). We get it by integration:

V = a3 4π

π∫
0

sin2 ψ dψ = 2π2a3 . (6)
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The universe mass is then given by the equation:

Mv =
3πc2a

2G
. (7)

3 Initial parameters of the universe

Consider that the universe didn’t begin its existence with all
of the matter contained therein today, but was born from a sin-
gle energy quantum M0 in a space of the size of the minimal
quantum packet:

a0 =
~

2M0c
=

G~
3πa0c3 . (8)

Thence

a0 =

√
G~

3πc3 � 5.26 × 10−36 m . (9)

The minimum time interval then:

t0 =
a0

c
=

√
~G

3πc5 � 1.76 × 10−44 s . (10)

The first quantum mass M0 of the universe is given by the
relation:

M0 =

√
3π~c
4G
� 3.34 × 10−8 kg . (11)

The universe we describe here resembles a black hole. Its
size is directly proportional to the amount of matter it con-
tains:

a• =
2GM•

c2 (12)

a• – radius of a black hole (Schwarzschild radius, horizon of
events)

M• – mass of a black hole.

The mass of the first quantum of the universe M0 is big
enough to create a black hole, because the minimum mass of
a black hole is given by Planck’s relationship:

M•0 =

√
~c
4G
� 1.09 × 10−8 kg . (13)

Thus, the initial quantum was below the event horizon, which
began at a distance given by the minimum size of the black
hole:

a•0 =

√
G~
c3 � 1.62 × 10−35 m . (14)

A black hole of this mass is characterized by temperature:

T•0 =
~c3

8πkGM•0

= 1.13 × 1031 K . (15)

4 The evolution of the universe

Let the mass of the universe be varied by quanta correspond-
ing to the mass of the first quantum M0. Then the size of
the universe will change in discrete values, and the passage
of time won’t be continuous, but it will flow in elementary
jumps:

Mv = nM0 (16)

a = na0 (17)

t = nt0 = n
a0

c
(18)

where:
n – natural number higher then zero.

The space where the initial quantum can occur is limited
by the expansion function of the universe a. As the mass of
the universe starts to grow, a will increase and matter will
have more space to be located and to move. The total energy
of the universe is permanently zero.

The universe can have zero total energy if the total grav-
itational potential energy that holds all its components to-
gether is negative and in absolute value is exactly equal to
the sum of all positive energy in the universe contained in the
masses and movements of the particles.

The matter growth within the universe does not occur by
locally emerging new matter, but by increasing the velocity
of motion of the initial quantum of energy to a speed close to
the speed of light in vacuum:

Mv = αvm M0 =
M0√
1 − v2

m
c2

= nM0 (19)

where:
vm – instant speed of all elementary particles with non zero

rest mass. Consider that this speed is the same for all
the quantum of energy in the universe. However, the re-
sulting velocity of the particles made up of these quanta
appear to be slower as the quantum of energy can move
back and forth through space.

The instant speed of particles with rest mass is given by:

vm = ȧ

√
1 −

1
n2 = c

√
1 −

1
n2 . (20)

The older the universe is, the closer the instant speed of
particles with a non zero rest mass is to the universe expan-
sion speed.

lim
n→∞

vm = c .

At the present time, the two values are not practically distin-
guishable.

Considering quanta of energy as moving one-dimensional
objects, their size should appear smaller due to relativistic
contraction:

l =
l0
αvm

= l0

√
1 −

v2
m

c2 . (21)
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The inner observer doesn’t know that he is shrinking to-
gether with his entire planet, his solar system or his galaxy,
at the same time that the universe itself expands. Because he
measures the expansion of the universe in comparision with
himself, it will seem to him that the universe is expanding
faster than it actually is. Due to the contraction of distance,
the gravitational force will appear to him stronger. He will
attribute it to the greater mass of interacting objects.

Therefore, from the perspective of the internal observer,
the size and mass of the universe will appear:

ai = α2
vm

a0 = n2a0 (22)

Mi = α2
vm

M0 = n2M0 . (23)

The fact, that the universe expands with speed ȧ = c per-
pendicular to our three-dimensional space and to all speed
vectors in it, can be expressed by adding an imaginary mark
before the value of the expansion speed. Generally, we can
express the speed of a mass object w this way:

w = v + ıȧ (24)

where:

v – an object speed in our three-dimensional space.

The square of w can be expressed in the form:

w2 = v2 − ȧ2
(
1 −

v2

c2

)
. (25)

Now the Einstein relativistic coefficient α gets the more
general form:

αw =
1√

1 − w2

c2

= αvαȧ

=
1√

1 − v2

c2

1√
1 + ȧ2

c2

=
1√

1 − v2

c2

1
√

2
.

(26)

The first coefficient αv in the relation (26) is the standard
form of Einstein coefficient α. The second coefficient αȧ is
related with the speed of the universe expansion and it is con-
stant. So the universe will appear to us

√
2 times bigger but

not more massive.
ai =

√
2n2a0 (27)

Mi =

√
2n23πc2a0

2
√

2G
= n2M0 . (28)

The universe density will seem to be equal with the criti-
cal density:

ρi =
3c2

4πGρ( a
αȧ

)2 =
3ȧ2

8πGa2 =
3H2

8πG
= ρk (29)

where:

H – Hubble constant:

H ≡
ȧ
a

=
c
a
. (30)

The density of the universe, in case of inner observer, thus
seems to be equal to the critical density. It corresponds to our
observation. In contrast to the inflation model it happens not
only effectively. Therefore, the entire universe appears to be
non-curved - flat, even though it is closed.

5 The universe pressure

The change of the internal energy of the universe corresponds
with the change of its energy. The universe can’t exchange
heat with its surroundings. Then the first theorem of thermo-
dynamics has an easy form by which we can express a change
of the universe energy as:

dU = −pdV = c2dM . (31)

Mass movement in the direction of the expansion of the
universe and its rise with time induce a force, which has size:

F = ı2
dM
dt

c = −
3πc4

2G
. (32)

This force acts on the surface:

S = 6π2a2 . (33)

This creates a pressure that is already known from the relation
(5):

p =
−c4

4Gπa2 = −
1
3

c2ρ . (34)

The pressure in the universe is negative at a positive en-
ergy density. However, matter and radiation create positive
pressure. It thus appears rather a local phenomenon operat-
ing in three-dimensional space, which has no effect on the
four-dimensional universe as a whole.

6 The universe age and mass

Three-dimensional black holes radiate energy from their hori-
zon into the surrounding space. The horizon of a black hole
bound up to the universe produces radiation which is moving
on the surface of a four-dimensional sphere and remains part
of it. As the universe expands, it cools down in such a way
that its temperature corresponds to the current temperature of
the black hole horizon.

The temperature of the radiation emitted at the beginning
of the universe is now the same as the temperature of the ra-
diation from the event horizon. The universe thus appears as
the interior of the black body, where the radiation density is
given by:

U =
π2

15
(kT )4

(~c)3 . (35)

For the temperature of the relict radiation Tr = 2.726 K re-
sults the energy density U � 4.18× 10−14 J m3 � 0.26 eV cm3
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out of the relation (34). This corresponds to the measured
value of the density of the relict radiation 0.25 eV cm3.

If the temperature of the universe at its beginning corre-
sponded to the temperature of the black hole horizon accor-
ding to the relation (15), today it should correspond to the
temperature:

T•n =
~c3

8πkGM•n

=
T•0

n
. (36)

If the temperature of the relict radiation Tr = 2.726 K
corresponds to the present temperature of the universe and at
the same time to the temperature of the radiation from the
early universe:

n � 4.14 × 1030 . (37)

The size of the universe (from the perspective of an inner
observer) is then:

ai =
√

2n2a0 � 1.27 × 1026 m . (38)

The Hubble constant H is then according to (29):

H =
c
a
� 2.35 × 10−18 s−1 � 72.63 km s−1 Mpc−1 . (39)

This value is consistent with the value of the Hubble con-
stant determined in 2018: H = 73.52 ± 1.62 km s−1 Mpc−1.
The actual age of the universe is therefore:

t =
1
H
� 13.5 × 109 yrs . (40)

The mass of the universe (from the point of view of an internal
observer) is:

Mi = n2M0 � 5.72 × 1053 kg . (41)

7 Visible and invisible matter

We already know how the mass and size of the universe as
a whole changes. How can the mass and size of its parts
change? The mass of all objects has to change, for an internal
observer, according to:

m2 = m1
t2
t1

= m1
n2

2

n2
1

(42)

where:

m1 – object mass at time t1 (∼ n2
1)

m2 – object mass at time t2 (∼ n2
2) .

The fact that this relationship is true can be seen in the
motion of matter around the centers of galaxies. Outside the
galaxy, the mass should move with velocity according to the
standard model (see curve A in Fig. 1)

v2 =
GMg

r
(43)

where:

Mg – galaxy mass
r – distance from the galaxy center.

If the mass at the edge of the galaxies is pulled away from
the center of the galaxy due to the universe expansion and
grows with distance (Mg(r) ∼ r) according to the relation
(42), although most of this mass cannot be observed, their
velocity around the galaxy’s gravitational center remains the
same in Fig .1 – the rotation curve becomes flat from a certain
distance from the center.

Fig. 1: Dependence of orbital velocity on distance from center of
galaxy

The relation (42) describes the total amount of matter
(perceivable or non-perceivable) that increases depending on
space-time expansion. So what about the perceivable matter?
If the relation (42) also applies to photons, and we still ob-
serve a redshift, this means that the first quantum of energy
must be fragmented into a larger number of smaller quanta.
For photons:

m f 2 = m f 1
n f 1

n f 2

t2
t1

(44)

where:

n f 1 – number of photons at time t1
n f 2 – number of photons at time t2
m f 1 – photon mass at time t1
m f 2 – photon mass at time t2.

If the universe with temperature T1 at time t1 contained
n f 1 particles then it will have at time t2 temperature T2 and
will contain n f 2 particles:

n f 2

n f 1
=

p2V2

p1V1

T1

T2
=

a2

a1

T1

T2
=

t2
t1

T1

T2
=

n3
2

n3
1

. (45)

After insertion into (44):

m f 2 = m f 1
T2

T1
= m f 1

n1

n2
(46)

λ2 = λ1
T1

T2
= λ1

n2

n1
. (47)
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As the temperature of the universe is decreasing, the mass
of the photons has to decrease too. The radiation on the way
through the universe gets colder, but the number of observable
photons increases – as if the universe in the past contained the
same amount of matter as today.

The particulate mass with non-zero rest mass will grow
by (42) but simultaneously their wavelength will lengthen ac-
cording to (47). Their mass is then given:

m2 = m1
T2

T1

t2
t1

= m1
n2

n1
(48)

where:
m1 – mass of a “cold” particle at time t1
m2 – mass of a “cold” particle at time t2.

As the mass of the universe increases, the number of qua-
nta energies increases faster and thus their energy decreases.
The smallest quanta of energy now have mass:

M0n =
n2M0

n3 =
M0

n
� 8.08 × 10−39 kg . (49)

Relationships (46) and (48) describe observable mass. This
is obviously lesser than the mass objects should have by the
equation (42). Mass corresponding to the difference we can’t
directly observe, but we can observe its gravitational effect.
The matter we name: “dark matter”. This is the “missing”
matter around the galaxies.

8 Observable quantity of energy

A standardized wave packet is related with the whole universe
and it moves in direction of the universe expansion [4]:

|ψ(a; t)|2 =
1

√
2π∆at

exp
[
−

(a − ct)2

2(∆at)2

]
. (50)

The wave packet related to the universe shows a dispersion
which causes it to seem higher. For as much that the mass
of the universe increases linearly with time, the dispersion is
independent of time:

∆at =

√
(∆a0)2 +

(
∆(m0ȧ)

m
t
)2

=

√
a2

0 +

(
m0ct0

m0

)2

= a0
√

2 .

(51)

This result is in agreement with αȧ = 1/
√

2 from the re-
lation (26). The amplitude of this wave package relative to a0
is then:

|ψ(a = ct; t)|2 a0 =
1

2
√
π
� 0.282 . (52)

It means that if the universe size is a, then on quantum level
corresponding to this size it is about 28.2 % of the whole uni-
verse energy. The rest of the universe energy 71.8 % occurs
on near quantum levels.

If we are situated on quantum level at the size a from
imaginary centre of our universe, we are able to observe only
the mass situated on the same quantum level. It means that
the rest of our universe mass is not observable for us even
though it gravitationally influences our universe as a whole.

9 Cosmological shift of spectrum

Perception (measurement) of time flow was obviously differ-
ent than it is today. Physical process lasting 1 s at present time
lasted n2/n1 times longer in the past. Dimensions of mass ob-
jects were n2/n1 times bigger and photons radiated from them
had n2/n1 times longer wavelength than they have in the same
process today.

The shift of the spectrum of the radiation of the cosmo-
logical objects is defined:

z ≡
λr − λe

λe
. (53)

This relation presumes that the spectrum of cosmological sou-
rce was the same in the past and today and the cosmological
shift has happened during the travel from the source to an ob-
server in consequence of the universe expansion. If the parti-
cles that create mass had smaller mass in the past than today
then the energy radiated from them was equivalently smaller
than today. We should rather write:

z =
λr − λe−today

λe−today
. (54)

In case that the mass of elementary particles were smaller
in the past, then:

λe = λe−today
nr

ne
. (55)

According to (42), (54) and (55) results (as in classical the-
ory):

z + 1 =
λr

λe−today
=
λr

λe

nr

ne
=

ar

ae
. (56)

10 Luminosity of cosmological sources

If the red shift does not exist, the apparent luminosity l of a
cosmological source would be given by relation:

l =
L
S

(57)

where:

L – absolute luminosity of a cosmological source
S – area on which photons from the cosmological source fall

to.

The radiation energy from a cosmological source decrea-
ses in three ways:

1. The energy of the detected photons is lower then their
original energy due to red shift according to (57).
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2. Photons radiated during time interval te−today (time the
process would last today) will reach target during time
interval ∆tr:

∆tr
∆te−today

=
λr

λe−today
= 1 + z . (58)

3. We can’t forget influence of lesser particle mass in the
past:

λe

λe−today
=

√
ar

ae
=
√

1 + z . (59)

The relative luminosity l of a typical cosmological source
(cosmological candle) can be then written in the form:

l =
L

4πd2
L

=
L

4πr2
e a2(1 + z)2.5 (60)

where:

dL – distance of a cosmological source given by:

dL = rea(1 + z)1.25 . (61)

The variable re is given by [5] for k = 1 and ä = 0 by the
relation:

re = c sin


tr∫

te

dt
a

 = sin
(
ln

tr
te

)
= sin [ln (1 + z)] . (62)

The relative magnitude of stars m is defined by the Pogson
equation [6]:

m = −2.5 log
(

I
I0

)
(63)

where I0 is the bolometric reference value 2.553×10−8W m−2.
Now we can calculate value l (for suitable L) in the rela-

tion (60) and calculate the curve m = m(z) using the rela-
tion (63) (see Fig. 2). The best fit with real measured values
of relative magnitude of supernovas type Ia [7] we get for
L � 2.765 × 1028 W. It acknowledges that the model above
can correspond with our reality.

Fig. 2: Relative supernova magnitude – calculated for L = 2.765 ×
1028 W

We can construct the so-called residual Hubble diagram
– relative luminosity of supernovas related to the case of an
empty universe (Ω = 0, k = −1, q = 0) (see Fig. 3).

∆(m − M) = 5 log
(

re

re0

)
. (64)

re0 = sinh[ln(1 + z)] . (65)

Fig. 3: Residual Hubble diagram – without consideration of dust
influence

11 Conclusion

Our universe doesn’t have to be necessarily open and acce-
larating its expansion in order to be in accordance with our
present observation and knowledge. In this article, I tried to
show that our universe can be closed and uniformly expand-
ing supposing that its mass increases proportionally to its size
and analogically its size increases proportionally to its mass,
similarly as black holes do.

Received on July 22, 2020
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The paper analyzes the two-step coordinate transformations, known as the simple (or
“heuristic”) approach to the Schwarzschild metric [3, 5, 22]. The main finding of
the analysis is that such transformations are unique as they correspond to the Iwa-
sawa decomposition for the special linear group SL(2,R) with the subgroup of rota-
tion SO(1, 1)+. It is noted that all original transformations utilize de facto determinant
of unity. However, as shown, this property is related to the action invariance under
diffeomorphism for gravity. The noted group symmetry of the coordinate transfor-
mations may shed light on the “paradox” of the original approach for obtaining the
Schwarzschild metric based on the Equivalence Principle only and enable its further
study. The path to generalization in SL(4,R) is suggested.

1 Introduction

In work “What is wrong with the Schwarzschild coordinates”
[5], J.Czerniawski demonstrated the two-step coordinatetran-
sformations from the Minkowski to the Schwarzschild metric.
Recently, Christillin and Morchio [3] slightly updated the ap-
proach by clarifying the step of the transformation from the
Gullstrand-Painlevé (G-P) to the Schwarzschild metric. With-
out this, the original path would not be consistent. Even if
the approach of obtaining the Schwarzschild metric via the
“heuristic” to be considered with certain cautiousness, the
original work was over-cited, bringing the substantial interest
in this topic [1,3,7,14,22]. The approach recently was called
the “inherent paradox of GR” [3], and the original question
has not been answered. This paper aims to walk through the
approach with maximum formality to present the correspon-
dence and possible path to the generalization.

2 Preliminaries and Notation

Diffeomorphism of a manifold M by definition is a smooth
invertible map φ : M → M such as the inverse map φ−1

be smooth as well. General diffeomorphism can be thought
as the deformation that does not preserve the metric on M.
The map φ : M → M of the transformation from affine η
to curvilinear g coordinates may be considered as a vector-
valued function of n-variables. By retaining the requirements
of smoothness, the transformation may be defined in terms of
partial derivatives in the form of the Jacobian matrices that
constitute second rank tensors

Jµa =
∂xa

∂xµ
Jµa =

∂xa

∂xµ
. (1)

The barred symbols denote the curvilinear coordinates, and
unbarred are for flat coordinates∗. The metric tensor is

gµν = JµaJνb ηab gµν = JaµJbνηab (2)

∗Since the order of indexes for J in the notation is arbitrary, it is chosen
such as the covariant form coincides with the “vierbein” or tetrad. So, one
can treat them as the same objects.

where indexes are (0, 1, 2, 3) and η has the signature (− +

+ +). The transformation is non-singular J , 0, the matrix
is bijective, and the inverse transform represents the simple
inverse matrix J = J−1. If the order of indexes as per (1),
the equation can be written in the matrix notation (for both
covariant and contravariant forms) as

g = J · η · JT . (3)

The capital letters are used for matrices excluding the metric
tensor g, and Minkowski η. In matrix notation, the form (co-
variant or contravariant) will be specified in the text. For the
spherical symmetry case, the Jacobian matrices are 4 × 4[

J 0
0 I2

]
.

Therefore, J can be written as 2 × 2 for the temporal and ra-
dial coordinates only, dropping the symmetric angular and
tangential terms that are not affected by transformations. The
spherical symmetry provides the unique case to consider the
transformations as being “two-dimensional” with certain lim-
itations. Though later in Section 7, the four-dimensional form
is reviewed. Natural units (c = 1) are employed through-
out. As a matter of choice, the common hyperbolic notation
is used for the radial escape velocity for shortness

v = th(β) =

√
rg
r

sinh(β) =
v

√
1 − v2

γ = cosh(β) =
1

√
1 − v2

=
1√

1 − rg
r

3 Step one: from Minkowski to Gulfstrand-Painlevé

The first coordinate transformation as given in [5, 22] is

dx1 = dx1
− vdx0 dx0 = dx0 (4)
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where v is the radial escape velocity of the gravitational field
or the river velocity [7]. The equations have the differen-
tial form; therefore, the term “Galilean transformations” can
be used with certain cautiousness. Despite the similarity in
the look, the latter is defined as the affine transformations of
the coordinates∗. According to [3,5], this transformation em-
bodies the Equivalence Principle (EP) and therefore plays the
central role in the approach.

The Jacobian matrix for the first transformation as per
definition (1) is then

J(1)
µa =

[
1 v
0 1

]
=

[
1 th(β)
0 1

]
Jµa

(1) =

[
1 0
v 0

]
=

[
1 0

th(β) 0

] (5)

where v can be taken with an arbitrary ± sign as not affect-
ing the final transform [5, 14]. Such transformation can be
classified as the spacetime shear deformation. It obviously
represents shear mapping transformation on the hyperbolic
plane. The value of “shear” is given by the relativistic veloc-
ity v = th(β) and the (imaginary) shear angle is β or rapidity.
Further, the term shear is used for this transformation for the
current purposes leaving aside its physical significance and
the relation to the EP. It leads to the G-P coordinates with the
metric tensor which has following covariant form

g1 = J(1) · η · J(1)T =

[
−

(
1 − v2

)
v

v 1

]

=

 −
(
1 − rg

r

) √
rg
r√

rg
r 1

 .
(6)

4 Step two: to the Schwarzschild metric

The second coordinate transformation J2 is pull-back from
the comoving G-P frame to the coordinate frame of reference
redefining time coordinate. The covariant form is

J(2) =

[
1 0
b 1

]
(7)

where b is the arbitrary parameter †. The total coordinate
transformation is the product of both transforms

J = J(2) · J(1) =

[
1 0
b 1

]
·

[
1 v
0 1

]
=

[
1 v
b vb + 1

]
(8)

∗The differential form of the Lorentz transformations has the same form
and obviously Λ η ΛT = η is valid for the differential form. For more on
differential transformation see [8].

†As suggested in [3] “the requirement to eliminate the off-diagonal term
of the P-G metric is generally accomplished just by redefining time in an ad
hoc way”.

that leads to the metric tensor

g = J · η · JT =

[
−(1 − v2) (v2 − 1) b + v

(v2 − 1) b + v (vb + 1)2 − b2

]
. (9)

Choosing b in the way to eliminate the off-diagonal terms one
obtains the Schwarzschild metric

gµν =

 −
(
1 − v2

)
0

0
(
1 − v2

)−1


=

[
−cosh−2(β) 0

0 cosh(β)

]
.

(10)

After b has been defined, the second transformation becomes

J(2)
µa =

[
1 0

sinh(β) cosh(β) 1

]
Jµa

(2) =

[
1 sinh(β) cosh(β)
0 1

]
.

(11)

As a result, the parameter ±b = vγ2 = sinh(β) cosh cor-
responds to the proper velocity of free-falling observer in the
Schwarzschild metric. It stands in the well-known expression
for the time coordinate transformation between the G-P and
the Schwarzschild metrics.

5 S L(2,R) with the Lorentz signature

The remarkable property of all Jacobian matrices is that they
all have the unity determinant‡. In order to classify them as
elements of a group, one may note that matrices are defined
on the Minkowski basis (space-time or the hyperbolic plane).
In fact, the Jacobian matrices can be expressed using an imag-
inary value for the time coordinate as

Jµa =
∂xa

∂xµ
=

 ∂x0
∂x0

1
i
∂x1
∂x0

i ∂x0
∂x1

∂x1
∂x1

 . (12)

In such a way, the Jacobian matrices constitute the subgroup
of SL(2,C) with only two imaginary off-diagonal elements in
the matrices. Let’s denote this group as SL(2,C)∗ ∈ SL(2,C).
Then, considering only the real parts, there is one-to-onemap-
ping of Z′ ∈ SL(2,C)∗ to Z ∈ SL(2,R) as follows

Z′ =

[
a −i b
i c d

]
→ Z =

[
a b
c d

]
. (13)

Ignoring the imaginary unit, in the way as it is done for the
Minkowski time coordinate, allows one to use the real val-
ues in the matrix as per the defined mapping to SL(2,R). In-
troduced in such a way, the group SL(2,C)∗ is isomorphic
to SL(2,R). This mapping is multiplicative and a bijection.
Hence,alloperations in SL(2,R) can betranslated to SL(2,C)∗

and vice versa using this isomorphism. Such mapping allows
one to utilize SL(2,R) on the Lorentz/Minkowski basis H1(2),
instead of its default, the Euclidean basis R2.

‡To be consistent, the fact is taken a priori “knowing” that the resulting
metric has |g| = |η| = −1. Section 8 reviews a physical ground for this.
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6 The group decomposition

The Iwasawa decomposition is the factorization of a semisim-
ple Lie group to the product of three closed subgroups as K
× A × N (“compact, Abelian and nilpotent”) [9, 13]. In the
application to SL(2,R) it is well studied [4, 12], and in terms
of the matrices is even obvious. Importantly, it implies the
uniqueness of the factorization of the element of the group to
the product of three subgroups, those elements are N is upper
triangular, A is diagonal, and K is orthogonal matrices, the
spatial rotations K ∈ SO(2).

One may see that using the mapping (13), the elements of
these three groups become the matrices of the following form

N =

[
1 b
0 1

]
A =

[
k 0
0 k−1

]
K =

[
cosh(α) sinh(α)
sinh(α) cosh(α)

] (14)

with k > 0. Since the mapping results in the complex conju-
gation of the angle of rotation (β→ iβ), the foremost notable
distinction from the decomposition of SL(2,R) is that K be-
comes the group of hyperbolic rotations SO(1, 1)+, that is the
pure Lorentz boost.

The covariant form of J(1), and contarvariant J(2) are ∈ N
(upper triangular matrices). Therefore, the decomposition
can be applied to contravariant J(1) and to contarvariant J(2)

which are lower triangular. In fact, they are explicitly the
Iwasawa decomposition J(2) = A · K · N (covariant form) and
J(1) = N · A · K (contravariant form). The latter is as follows

Jµa
(1) =

[
1 0

th(β) 0

]
=

[
1 −sinh(β) cosh(β)
0 1

]
·

·

[
cosh(β) 0

0 cosh−1(β)

]
·

[
cosh(β) sinh(β)
sinh(β) cosh(β)

]
.

(15)

Notably, that N in the factorization becomes already known
matrix N = J−1

(2) (11). The resulting transformation is

J = J(2) J(1) = A · K (16)

where J(2) J(1) has the form of the product of two upper and
lower triangular matrices N1 · N2. And since K ≡ Λ is the
Lorentz boost, that leaves the original metric invariant η = Λ ·

η ·ΛT, then K drops being at the right side of (16). Therefore
the resulting Schwarzschild metric

g = J · η · JT = A · η · AT (17)

is obviously defined by the diagonal matrix A∗

Aνb =

[
cosh(β) 0

0 cosh−1(β)

]
∗It coincidences with the Schwarzschildian vierbein or “metric

squared”.

Aνb =

[
cosh−1(β) 0

0 cosh(β)

]
. (18)

Therefore, all approach can be represented as just the diago-
nalization of the first shear transformation matrix.

Proposition: If J1 is the shear transformation in the con-
travariant form with the shear value v, then its Iwasawa de-
composition with the mapping (13) provides the diagonal ma-
trix A that uniquely represents the Jacobian matrix J that maps
the Minkowski to the Schwarzschild metric. The process is
that A normalizes N, or A is the unique diagonal form of the
original shear transformation†.

7 The generalization to the Cartesian coordinates

The suggested approach can be generalized to four-dimensio-
nal spacetime in the Cartesian coordinates. The hyperbolic
shear parameter v is non-Lorentz invariant four-vector v =

(1, vx, vy, vz), and its norm is ||v|| = cosh(β)−1. It shall consti-
tute the column of contravariant shear transformation in the
Cartesian coordinates‡

Jνa(1) =


1 0 0 0
vx 1 0 0
vy 0 1 0
vz 0 0 1

 . (19)

The KAN decomposition of this form provides the unique Ja-
cobian matrix for the metric as described in the Proposition.
In case if vy = vz = 0, implying that one direction via co-
ordinate x is considered, then it converges to the reviewed
case above. It is known that the Iwasawa decomposition can
be also applied to elements of SL(4,R) group [4, 19]. The
straightforward approach is to use the Gram–Schmidt pro-
cess that leads to QR decomposition, from which the KAN
form can be obtained [19]. However, the more elegant way
is to use the Givens rotations, which are literally spatial rota-
tions of the SO(3) group. Obviously, the shear vector in the
Cartesian coordinates can be represented as

v = (1, th(β) sin(θ) cos(φ), th(β) sin(θ) sin(φ), th(β) cos(θ))

where θ and φ are the angles between vector v and the coor-
dinate axes. Hence, two sequential spatial rotations Rz(φ) ∈
SO(3) and Ry( π2 − θ) ∈ SO(3) reduce the matrix to the case
above, eliminating second and third components (vy and vz).
Treated in such way, a general transformation in four-dimen-
sional spacetime (19) is {SL(2,R),SO(3)}.

The details and the analysis of the decomposition of (19)
lay out of the scope of this work and can be an interesting
topic for future research.

†NAK, as shown, results in contrvariant form of A, similarly KAN de-
composition gives the covariant form of A.

‡Note, the Jacobian’s column vectors’ signature becomes opposite to the
metrics signature (η and g) as per definition of SL(2,C)∗ above.
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8 Discussion

At the critical angle, a possible weak point of the original
path should be also noted. When one uses “one coordinate
change” transformations (5) and (7), in fact, the additional
condition on the determinant |J| = 1is taken “under the hood”.
During the classical derivation of the Schwarzschild metric in
the GR, |g| = −1 is the obtained results from the field equa-
tions (note: even with Tµν = 0). Contrary to that, the re-
viewed “heuristic” approach uses |J| = 1 that explicitly leads
to |g| = −1 a priori knowing the resulting metric.

Once this principle physically has solid ground, then the
above parallel can be considered fundamental. Without this,
one may still regard this approach as a coincidence. From
the prospect of the physics, the value of g00 for the Schwarz-
schild metric can be obtained from the Newtonian gravitation
[15] or the equivalence principle and red-shift experiments
[20, 21]. If one would a priori know that |g| = −1, then the
Schwarzschild metric easily follows by defining grr = −g−1

00 .
From another perspective, the fact is that the spherically

symmetric static gravitational field has explicitly |g| = −1
cannot be just a coincidence but may potentially signal a hid-
den symmetry attached to such property.

Consider the action in the Minkowski spacetime S 1(x) =∫
L(x, ẋ) dV4 and in the spacetime with the curvature S 2(x) =∫ √
−gL(x, ẋ) dV4 expressed by the Lagrangian density. The

diffeomorphism invariance of the action would require that
under the map φ : S 1 → S 2 = S 1 and therefore |g| = −1. On
the other hand, the action invariance under diffeomorphism
implies the equivalence of the conservation of energy, mo-
mentum, and the continuity equations for the system.

9 The conclusion

The analyzed approach shows the striking correspondence
between coordinate transformation from the Minkowski spa-
cetime to the Schwarzschild metric and SL(2,R) group using
the mapping to the Lorentz base. The original “heuristic” ap-
proach to the Schwarzschild metric can be considered via the
unique group decomposition by obtaining the first coordinate
transformation’s corresponding diagonal form.

SL(2,R) group has already appeared in the application to
the gravitation metric in [10] and in two-dimensional quan-
tum gravity [17]. This review gives a more classical and intu-
itive outlook on the group’s correspondence to the coordinate
transformations of the metrics.

The work outlines a critical point of the original approach,
though suggesting further prospects for the method general-
ization and research. The reviewed case brings an additional
question on the action invariance under diffeomorphism for
the gravity. The group symmetry of the reviewed coordinate
transformations may probably shed light on the resolution of
the mentioned “inherent paradox of GR”.
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Gram–Schmidt Process, Iwasawa Decomposition, and Reduc-
tion of Structure in Principal Bundles. In: Basic Bundle Theory
and K-Cohomology Invariants. Lecture Notes in Physics, vol. 726,
Springer, Berlin, 2008.

10. Jadczyk, A. Gravitation on a Homogeneous Domain. arXiv: math-
ph/1105.3814v1.

11. Kassner K. A physics-first approach to the Schwarzschild metric. Ad-
vanced Studies in Theoretical Physics, 2017, v. 11 (4), 179–212. arXiv:
gr-qc/1602.08309.

12. Kisil, Vladimir V. Geometry of Möbius Transformations: Elliptic,
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A Wave Representation for Massless Neutrino Oscillations:
The Weak Interaction Transmutes the Wave Function

Edward R. Floyd

10 Jamaica Village Road, Coronado, California 92118, USA. E-mail: floyd@san.rr.com

There are solutions of the Klein-Gordon equation for the massless neutrino that pro-
duce massless neutrino oscillation of flavor. These solutions serve as a counterexample
to Pontecorvo, Maki, Nakagawa, and Sakata theory for neutrino oscillation of flavor,
which implies neutrinos must have mass contrary to the standard model. We show that
the wave function for the massless antineutrino for an inverse β decay (IBD) is a su-
perposition of two independent solutions of the Klein-Gordon equation. One solution
represents the latent incident wave upon an IBD. The other solution represents the latent
reflected wave from the IBD. This superposition renders a compound modulated wave
function with regard to amplitude and phase modulations. This compound modulation
is shown to facilitate neutrino oscillation that may be massless and, therefore, consistent
with the standard model. Extra to a massless counterexample, the weak interaction is
shown to transmute the wave function during an IBD by changing the amounts of the
latent incident and latent reflected wave functions that are allocated to the superposition.

1 Introduction

The Pontecorvo, Maki, Nakagawa, and Sakata (PMNS) the-
ory for oscillation of neutrino (ν) flavor implies that the neu-
trino has a finite mass in contrast to the standard model [1]–
[4]. PMNS theory, which was developed in the mid-twentieth
century in the absence of a contending theory, soon became
preeminent regarding neutrino oscillations including its im-
plication that the neutrino must have a finite mass in order
to oscillate. A counterexample to PMNS theory now exists:
the quantum trajectory representation of quantum mechan-
ics had predicted in 2017 that massless neutrino oscillation is
an alternative possibility that is consistent with the standard
model [5]. However, the quantum trajectory representation
is presently arcane, for it is couched in a quantum Hamilton-
Jacobi formulation [5]–[17]. As a result, PMNS theory has
maintained its preeminence on neutrino oscillation. A way to
overcome this preeminence is to describe massless neutrino
oscillation in the more familiar wave function representation,
which would be more accessible to a much broader audience.
Our objective in this paper is to provide such.

A wave function representation that is a counterexample
to PMNS theory is attainable. This theoretical counterexam-
ple renders massless neutrino oscillation while also showing
that PMNS theory is not the exclusive explanation of neu-
trino oscillation. In this paper, we show that there are math-
ematical solutions of wave equations, which to the best of
our knowledge have been used only a few times [18]–[23] to
describe wave phenomena, and which invite further investiga-
tion. We study massless neutrino oscillation with these math-
ematical solutions of the Klein-Gordon equation for a mass-
less antineutrino. This mathematical solution is synthesized
by the superpositional principle from two independent solu-
tions of the Klein-Gordon equation for an antineutrino before

encountering a charged current interaction. The two solutions
are the latent incident solution and the latent reflected solu-
tion. The “quantum action” of the Klein-Gordon equation is
composed of both independent solutions of the Klein-Gordon
equation [14] and can be seen as the order ~0 term of the
quantum action of QFT.

Extra to the initial goal of adducing a massless counterex-
ample, the behavior of the synthesized solution also gives in-
sight into the weak interaction (weak force). A byproduct
of this investigation shows that the weak interaction with-
out causing any exchange of energy can transmute the Klein-
Gordon solution from a synthesized solution to a plane-wave
solution.

The particular charged current interaction that we exam-
ine herein is the inverse beta decay (IBD) where [24]

νe + p
W+ boson exchange
−−−−−−−−−−−−−−−−−→ e+ + n, (1)

in which the antineutrino ν participates as an electron antineu-
trino νe. The wave function for ν is specified by ψ. When νe

arrives at the point qb ready for IBD absorbtion in (1), its ψ is
assumed in this ab initio calculation to be then a traveling
complex-exponential plane wave exp(ikq) with wave num-
ber k, in cartesian coordinate q, and tacitly with amplitude 1.
While the ab initio calculation develops flavor oscillations for
a massless ν, the conventional terminology “neutrino oscilla-
tion” is retained for referencing the oscillation phenomenon
herein.

An outline of the rest of this paper follows. In §2 we de-
velop a model by an ab initio computation for massless neu-
trino oscillation for an IBD. The wave function for the neu-
trino is synthesized from the latent solutions for the incident
and reflected wave functions by the superpositional princi-
ple. The latent incident and latent reflected wave functions are
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traveling complex-exponential plane waves that are indepen-
dent one-dimensional solutions of the Klein-Gordon equa-
tion. This synthesized solution is shown to be compoundly
modulated with regard to amplitude and phase. This com-
pound modulation induces periodic nonuniform propagation
that in turn facilitates neutrino oscillation. The amplitude
and phase modulations are individually analyzed. We ap-
ply the same modulation analyses to the wave function’s spa-
tial derivative. In this wave function representation for mass-
less oscillation, the weak interaction changes the synthesized
wave function to a traveling complex-exponential plane-wave
solution, which is then ready for absorption by the IBD pro-
cess. In §3, we examine selected didactic examples. The ex-
amples show that the individual contributions of phase mod-
ulation and amplitude modulation complement each other.
Where one modulation is at a peak, the other is at a null. The
examples also show that the compound modulations of the
wave function and its derivative supplement each other. That
is where the amplitude modulation increases dilation in one, it
decreases it in the other. And where phase modulation rotates
the phase of one clockwise, it rotates the other’s phase coun-
terclockwise. In §4 a brief discussion is presented. Together,
the complementing and supplementing are shown to facilitate
periodic nonuniform propagation that permits massless neu-
trino oscillation. Findings and conclusions are presented in
§5.

2 Ab initio calculation

The one-dimensional stationary Klein-Gordon equation
(SKGE) for an antineutrino with mass m and for the Cartesian
dimension q is a second-order, linear, homogeneous ordinary
differential equation given by [25]

−~2c2 ∂
2ψ(q)
∂q2 +

(
m2c4 − E2

)
ψ(q) = 0 (2)

where ~ is Plank’s constant, c is speed of light and E is energy.
As such, the superpositional principle applies to the SKGE’s
solutions. The inertial reference frame for describing ψ of (2)
is the frame for which the target proton of the IBD is at rest.
This makes E dependent on the dynamics of the target pro-
ton. The threshold energy for executing an IBD is Ethreshold =

1.806 MeV for νe and progressively greater for the analogous
charged current interactions for νµ and ντ. Herein, it is always
assumed the ν has energy greater than the threshold energy.
The notation ψ denotes that the wave function of the antineu-
trino is a solution of (2) but does not specify whether it is unis-
pectral, ψ = exp(ikq), or bispectral ψ2. Eq. (2) remains well
posed should m = 0 in agreement with the standard model.
Studying the case m = 0 is sufficient to render a massless
counterexample to PMNS. For antineutrino energy E and nil
mass, a set of independent solutions sufficient to solve (2)
may be given by {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} where the
wave number k = E/(~c).

The incident antineutrino is assumed to propagate in the
+q direction toward the target proton of an IBD, while any
reflection from an IBD would propagate in the −q direction.
The solution ψ = exp(ikq) is a unispectral wave function with
one spectral component, +k (the solution of the homogeneous
SKGE is defined to within a constant in phase). Its derivative
∂qψ = ikψ is also unispectral and is displaced in phase from
ψ1 by a constant π/2 radians. The amplitude of ∂qψ relative
to that of ψ is multiplied by the factor k. Thus, the unispectral
ψ(q) displays uniform rectilinear motion, which presents a
constant relationship

∂qψ
/
ψ = ∂q ln(ψ) = ik (3)

to any encountered current interactions. The constant charac-
ter of (3) is expected, for ψ(q) is an exponential of the linear
variable q. Uniform rectilinear propagation precludes flavor
oscillations.

Let the incident antineutrino to an IBD have a bispectral
wave function ψ2 with spectral components given by wave
numbers {+k,−k}. We can synthesize a bispectral ψ2 by the
superpositional principal from the set {exp(+ikq), exp(−ikq)}
of independent solutions for the SKGE. The incident bispec-
tral ψ2 may be presented in a few representative forms as [5]

ψ2 =

bispectral solution of SKGE by superpositional principle︷                                  ︸︸                                  ︷
α exp(+ikq)︸        ︷︷        ︸

latent incident wave

+ β exp(−ikq)︸        ︷︷        ︸
latent reflected wave

(4)

= (α − β) exp(ikq)︸              ︷︷              ︸
traveling wave

+ 2β cos(kq)︸      ︷︷      ︸
standing wave

= (α + β) cos(kq) + i(α − β) sin(kq)︸                                     ︷︷                                     ︸
coherent standing waves

(5)

= Aψ exp(i Pψ),︸          ︷︷          ︸
compoundly modulated traveling wave

(6)

where all forms (4)–(6) are solutions of the SKGE. In (6), ψ2
is compoundly modulated for its amplitude Aψ and phase Pψ

are modulated as given by

Aψ =

amplitude modulation︷                              ︸︸                              ︷
[α2 + β2 + 2αβ cos(2kq)]1/2

and

Pψ =

phase modulation [5]︷                      ︸︸                      ︷
arctan

(
α − β

α + β
tan(kq)

)
.

Eqs. (4)–(6) for the antineutrino’s wave function are all
representations of a wave function synthesized by the super-
positional principle. As such, each individual equation of (4)
through (6) represents a synthesized solution of the SKGE
consistent with the orthodox interpretation of quantum me-
chanics. The coefficients α and β respectively specify the
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amplitudes for the latent incident and reflected waves asso-
ciated with an IBD. Propagation of the latent incident wave
in the +q direction implies that α2 > β2. The coefficients α
and β are normalized by

α2 − β2 = 1 (7)

consistent with one νe in (1) for an IBD (it is also the normal-
ization used in the quantum trajectory representation). Know-
ing the value of one coefficient implies knowing the value of
the other by normalization, (7). If the conditions α > 1 and
0 < β2 = α2 − 1 exist, then bispectral propagation in the
+q direction follows. The bispectral propagation for ν con-
sistent with (4)–(6) is nonuniform, albeit still rectilinear, in
the +q direction. As such, ψ2(q) may also be considered to
be the wave function synthesized by the superposition of the
latent incident wave and the the latent reflected wave upon
each other. Note that herein the coefficients could have been
expressed hyperbolically by α = cosh(γ) and β = sinh(γ)
consistent with (7).

For completeness, if the incident and reflected waves were
neither latent nor superimposed, then the wave function rep-
resentation would be in a two-dimensional space {qincident,
qreflected} given by

ψ(qincident, qreflected) = α exp(+ikqincident)

+ β exp(−ikqreflected),

which is not equivalent to ψ2(q) of (4)–(6). Eqs. (4)–(6) in-
dividually show the superpositioning to describe ψsuperimposed
in one-dimensional space by a single independent variable
q. Also for completeness, a literature search for “reflected
neutrinos” on the web has found nothing for reflected neutri-
nos from charged current interactions per se but did find an
unpublished report regarding reflections of antique neutrinos
from the big bang [26].

Let us examine the compoundly modulated traveling wa-
ve (6) in special situations for didactic reasons. Should β =

0, then the amplitude Aψ and phase Pψ would respectively
become

Aψ

∣∣∣
β=0 = [α2 + β2 + 2αβ cos(2kq)]1/2|β=0 = α|β=0 = 1 (8)

and

Pψ

∣∣∣
β=0 = arctan

(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
β=0

= kq. (9)

Then, (6) would represent unispectral propagation as expec-
ted. Next, we consider the case (|β| = α) < {0 ≤ β2 = α2 −

1} and in violation of the normalization (7). Nevertheless,
|β| = α is a limit point for β → ∞. Should ±β = ∞ (i.e.
where a latent total reflection would preempt any IBD), then
the amplitude would reduce to trigonometric identities with
scaling factor 2α given by [27]

Aψ

∣∣∣
β=α

= 2α
(

1 + cos(2kq)
2

)1/2

= 2α cos(kq) (10)

and

Aψ

∣∣∣
−β=α

= 2α
(

1 − cos(2kq)
2

)1/2

= 2α sin(kq) (11)

consistent with (5). The corresponding phase would be

Pψ

∣∣∣
β=α

= arctan
(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
β=α

= 0 (12)

and

Pψ|−β=α = arctan
(
α − β

α + β
tan(kq)

) ∣∣∣∣∣
−β=α

=
π

2
(13)

also consistent with (5). Then, in either case and consistent
with (4), (6) would represent a scaled standing cosine wave
for β = α and a scaled standing sine wave for −β = α. Stand-
ing waves, while mathematically permitted, would have rel-
ativistic issues in addition to the aforementioned total reflec-
tion issue. Thus, the representation for the wave function (6)
covers all solutions of physical interest of (2) propagating in
the +q direction with normalization α2 − β2 = 1 (7).

If the neutrino and antineutrino are considered to form a
Majorana pair of particles (an unsettled question), then the
wave functions for the neutrino and antineutrino would be
complex conjugates of each other. Under the Majorana hy-
pothesis, the latent reflected wave β exp(−ikq) in (4) would
be the wave function for a neutrino with amplitude β. In this
case, (6) would represent the superposition of the wave func-
tions of the Majorana neutrino and antineutrino upon each
other. This is consistent with Pontecorvo’s proposal [28] that
a mixed particle consisting of part antineutrino and part neu-
trino may exist. Furthermore, the set of independent solu-
tions {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} = {ψ, ψ} that solve the
SKGE, form a pair of Majorana solutions that are sufficient
to solve the SKGE. Any solution, e.g. (4)–(6), of the SKGE
formed from this pair by the superpositional principle would
itself have a Majorana partner that would also be its com-
plex conjugate. While the wave functions given by (4)–(6)
are Pontecorvo “mixed” solutions [28], they are still speci-
fied herein as ψs of the ν as determined by the directional
characteristic (+q) of the latent incident wave.

Let us briefly discuss how this ab initio calculation de-
scribes the evolution of the bispectral ψ2 during consumma-
tion of an IBD. The weak interaction is not a “force” per
se. It does not cause an energy exchange among its partici-
pants. Rather, for purposes of this paper, it enables beta decay
where a neutron decays into a proton, electron, and neutrino,
which is the inverse of an IBD (1). Let us consider that the
weak interaction occurs in a black box over the short range
of the weak interaction between qa, where the antineutrino
initially encounters the weak interaction, and qb where the
antineutrino is absorbed by the target proton. The short range
of the weak interaction is given by qb − qa ≈ 10−18 m, a
value much smaller than the radius of the proton. Within the
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black box qa < q < qb, the same set of independent solutions
{exp(+ikq), exp(−ikq)}, which are sufficient to solve (2), are
used to describe ψ2 while it is subject to the forceless weak in-
teraction that precludes any energy exchange. In the absence
of an energy exchange, the wave number k remains a con-
stant in (4)–(6) during νe’s transit of the black box from qa to
qb. But the coefficients {α, β} are changed! During the transit
of νe from qa to qb in this ab initio calculation, the forceless
weak interaction by W+ exchange smoothly changes coeffi-
cients {α, β}|qa → {1, 0}|qb while continuously maintaining the
normalization α2 − β2 = 1 of (7). In other words, the coef-
ficients while inside the black box boundaries become vari-
ables {α(q), β(q)}qa≤q≤qb that are explicitly still subject to the
normalization

α2(q) − β2(q) = 1, qa ≤ q ≤ qb,

which is consistent with (7). A smooth transition of the coeffi-
cients from {α(qa), β(qa} to {1, 0}|qb with C1 continuity would
be sufficient to maintain C1 continuity of the νe’s wave func-
tion as it evolves, during its transit of the black box with
constant E and wave number k, from a bispectral ψ2(qa) to a
unispectral exp(ikqb) ready to be absorbed. At qb, the output
transmitted wave function of the black box will have become
a unispectral wave function as given by

ψ2(qa) = α(qa) exp(ikqa) + β(qa) exp(−ikqa)

= [1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)

q→qb, ∴ β(q)→0
−−−−−−−−−−−−→ exp(ikqb), qa ≤ q ≤ qb

(14)

under the influence of the exchange of the W+ boson between
the proton and antineutrino. In the extended black box, a pro-
visional form for β(q) with C1 continuity during the transmu-
tation of ψ from ψ2(qa) to exp(ikqb) in (14) is offered by

β(q) =
β(qa)

2

[
1 + cos

(
q − qa

qb − qa
π

)]
, qa ≤ q ≤ qb.

Again, no energy is exchanged between the proton and
antineutrino by the W+ boson exchange. (If the transmitted
wave function at qb had not been unispectral exp(ikq), then
its initial values at qa would have been flavor incompatible
ν(qa) , νe(qa), which would have preempted an IBD. Con-
summated IBDs are rare events.) The transmitted unispec-
tral wave function exp(ikq) is the wave function for νe in (1).
The normalization α2 − β2 = 1 (7) specifies that the value of
the amplitude of the transmitted unispectral wave function is
1, consistent with the assumptions for νe’s wave function for
(1). The transmitted unispectral νe is compatible with being
absorbed by the proton consistent with (1). The function of
the black box in the IBD process (to change the input bispec-
tral wave function to an output unispectral wave function of
amplitude 1 in a forceless manner for νe’s E never changes)
has been completed with the νe positioned at qb, ready to be

absorbed with the target proton. The W+ boson exchange
has now been completed. The IBD carries on. The IBD
completes consummation consistent with (1) where its par-
ent particles, the proton and the unispectral antineutrino, are
absorbed, and the IBD emits its daughter products, a positron
and a neutron. The latent transmission coefficient T and re-
flective coefficient R of the black box for the weak interaction
process are the expected

T =
α2 − β2

α2 =
1
α2 and R =

β2

α2 , (15)

where the coefficients {α, β} are their pre-weak interaction
values.

Flavor compatibility for an IBD is determined by the bou-
ndary conditions {ψ, ∂qψ} at the black box’s input barrier in-
terface qa. The black box in this ab initio calculation ren-
ders a transmitted unispectral wave function exp(ikq), if and
only if ψ2 has proper IBD initial values for the black box,
{ψ, ∂qψ}q=qa .

Future research may refine the aforementioned descrip-
tion of the evolution of the antineutrino’s wave function in
the black box. If so, the principle of superposition of the
wave functions of the latent incident and the latent reflected
waves could still describe a generalized (14). For example,
future research may find that the transmitted wave function
of energy E from the black box should have coefficients {(1 +

β2
b)1/2, βb}|q=qb with β > 0 for IBD absorption of the antineu-

trino. For a successful IBD, the black box model of the weak
force would then transmute the incident wave function de-
scribed by

[1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)
q→qb, ∴ β(q)→βb
−−−−−−−−−−−−−→

(1 + β2
b)1/2 exp(ikqb) + βb exp(−ikqb)

(16)

where qa < q ≤ qb. This generalizes (14) and would still
describe a counterexample permitting massless neutrino os-
cillation. Eqs. (14) and (16) are analogous to the invariance
of the Schwarzian derivative under a Möbius transformation
in the quantum trajectory representation [14], [29].

Chirality and helicity are the same for massless leptons
propagating with speed c. The quantum measure of helic-
ity, normalized over a cycle of nonuniform propagation, for
a massless antineutrino before encountering the black box,
q < qa, would by (4)–(6) be α2−β2 = 1, which is also the nor-
malization (7). Upon completing the transit of the black box
at qb, the antineutrino, with ψ = exp(ikqb), would still have
the helicity value of 1 conserving helicity (chirality). Thus,
the interaction of the massless antineutrino with the black box
would be reflectionless. This is consistent with (14) and (16).
The concept of superimposing a latent reflected wave and the
latent incident wave upon each other to achieve reflectionless
transmission had initially been applied to an acoustical ana-
logue [20].
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The representation of ψ2 by (6) may be derived from the
trigonometric form of (5) by using either Bohm’s scheme for
complex wave functions to render ψ2’s amplitude and phase
[30] or by vector analysis. The amplitude Aψ = [α2 + β2 +

2αβ cos(2kq)]1/2 is recognized as a re-expressed law of cosi-
nes where the exterior angle argument 2kq is the supplement
of π − 2kq or

Aψ = [α2 + β2 − 2αβ cos(π − 2kq)]1/2︸                                   ︷︷                                   ︸
law of cosines

= [α2 + β2 + 2αβ cos(2kq)]1/2︸                              ︷︷                              ︸
law of cosines for exterior angles

.

For completeness, the phase is established [30] by Pψ(q) =

arctan{=[ψ(q)]/<[ψ(q)]}, which by (5) renders

Pψ = arctan
(
α − β

α + β
tan(kq)

)
. (17)

Also for completeness, the phase is related to the quantum
Hamilton’s characteristic function (quantum reduced action)
W by Pψ = W/~ [7], [10], [14]. The W has been shown
to change values monotonically [14] implying that Pψ also
behaves monotonically.

The bispectral ψ2 as represented by (6) exhibits the su-
perposition of the latent incident and reflected wave func-
tions upon each other that are described by functions of q
(4). The superposition induces a compound modulation in
ψ2, which in turn induces nonuniform rectilinear propagation
for massless neutrinos as shown in §3. PMNS theory achieves
nonuniform rectilinear propagation in one dimension by su-
perimposing three different masseigenstates within the neu-
trino [1]–[4]. Application of Eq. (6)-like representations have
been made to study step barriers [18] and tunneling [19].

Before an IBD, q ≤ qa, the nonuniform propagation of
the compoundly modulated ψ2(q) with q can be examined
more closely by considering the phase and amplitude mod-
ulations separately. The phase modulation may be described
by the phase displacement between the phase of the bispec-
tral ψ2 given by (6) and the phase kq of the corresponding
unispectral wave function exp(ikq), which propagates recti-
linearly with uniform motion. This phase displacement is a
rotational displacement in complex ψ-space between ψ2(q)
and the unispectral exp(ikq). The phase displacement due to
phase modulation Pmψ may be expressed in units of radians
as a function of phase kq, also in units of radians, as given by

Pmψ = arctan
(
α − β

α + β
tan(kq)

)
− kq, q ≤ qa (18)

where kq, which is also the phase of unispectral exp(ikq), is
not restricted to its principal value.

The derivative of phase with respect to q, for the bispec-

tral wave function (6) is given by [5]

∂ arctan
(
α−β
α+β

tan(kq)
)

∂q
=

(α2 − β2)k
α2 + β2 + 2αβ cos(2kq)

=
k

α2 + β2 + 2αβ cos(2kq)
.

(19)

Eq. (19) for the bispectral wave function exhibits nonuniform
phase propagation that is periodic in q. The derivative of
phase with respect to q remains positive definite for the de-
nominator on the right side of (19) is always positive for
all q by the Schwarzian inequality. Meanwhile, the corre-
sponding derivative of phase for the unispectral wave func-
tion exp(ikq) is ik, which is constant and manifests uniform
rectilinear propagation. For completeness in the quantum tra-
jectory representation, the derivative of phase with regard to q
renders the conjugate momentum ∂qW divided by ~ [8]–[14].

The relative amplitude dilation Amψ due to amplitude mo-
dulation Aψ of (6) or (8), relative to (α2 + β2)1/2, is defined to
be a dimensionless variable that is a function of phase kq and
given by

Amψ ≡
[α2 + β2 + 2αβ cos(2kq)]1/2 − (α2 + β2)1/2

(α2 + β2)1/2

=

[
1 +

2αβ cos(2kq)
α2 + β2

]1/2

− 1, q ≤ qa.

(20)

Any finite β = (α2 − 1)1/2 is sufficient to cause ψ2 to generate
nonuniform rectilinear motion consistent with the compound
modulation implied by (18) and (20).

As the wave function ψ2 for the antineutrino must be C1

continuous until absorbed in anIBD, thebehavior of itsderiva-
tive ∂qψ2 must also be considered. If the dividend of ∂qψ2 / ψ2
were a constant or independent of q, then neutrino oscillation
would not be supported as previously noted. From (4)–(6),
the derivative of the bispectral wave function ∂qψ2 is given
by

∂qψ2 = ik[α exp(ikq) − β exp(−ikq)]

= k[(α − β) cos(kq) − i(α + β) sin(kq)] exp(iπ/2)

= k [α2 + β2 − 2αβ cos(2kq)]1/2︸                              ︷︷                              ︸
law of cosines

× exp
[
i arctan

(
α + β

α − β
tan(kq)

)
+ i

π

2

]
.

(21)

A difference between (4)–(6) for ψ2 and (21) for ∂qψ2 is the
change of the sign of β and the phase shift π/2. A finite β by
(4) and (21) ensures that

∂qψ2(q)

ψ2(q)
= ik

(
α exp(ikq) − β exp(−ikq)
α exp(ikq) + β exp(−ikq)

)
(22)

would be a variable of q in contrast to the unispectral case
(3). The bispectral ψ2(kq) propagates in a nonuniform manner
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that facilitates neutrino oscillation without the need for mass-
eigenstates of PMNS theory.

There is an alternative expression for ∂qψ2(kq) that con-
veniently shows its relation to ψ(kq − π/2). This relation is
shown by (4) and (21) to be

∂qψ2(kq) = ik[α exp(ikq) − β exp(−ikq)]

= k{α exp[i(kq + π/2)] + β exp[−i(kq + π/2)]}

= k ψ2(kq + π/2).

(23)

Eq. (23) can be generalized to

∂qψ2(kq) = kψ2(kq + n1π),

n1 = ±1/2, ±3/2, ±5/2, · · · .
(24)

where n1 is bound by the antineutrino’s creation point and the
point qa where an IBD commences. The bispectral derivative
∂qψ2 by (21)–(24), like ∂qψ1, is also a solution of the SKGE.

The derivative of the bispectral wave function is com-
poundly modulated. Its amplitude Aψ

′ and phase Pψ
′ are re-

spectively given by

Aψ
′ = k[α2 + β2 − 2αβ cos(2kq)]1/2, q ≤ qa (25)

and

Pψ
′ = arctan

(
α + β

α − β
tan(kq)

)
+
π

2
, q ≤ qa. (26)

Its relative amplitude dilation Amψ
′ due to amplitude mod-

ulation and its phase displacement (a rotation) due to phase
modulation Pmψ

′ for ∂qψ2(kq) are given respectively by

Amψ
′ = k

[
1 −

2αβ cos(2kq)
α2 + β2

]1/2

− k, q ≤ qa (27)

and

Pmψ
′ = arctan

(
α + β

α − β
tan(kq)

)
− kq, q ≤ qa. (28)

The dilations and rotations of (27) and (28) for ∂qψ2(kq)
are analogous to those for ψ2, (20) and (18)respectively. Whi-
le ∂qψ2(kq) has compound modulation with the same period
(oscillation cycle) as that of the associated ψ2(kq), the of di-
lations and rotations differ by being out of phase, cf. (6) and
(21)–(28). The relative amplitude dilation and phase rotation
of ∂qψ2(kq) are opposite to those of ψ2(kq). This is desirable
for flavor oscillation.

Let us now examine the measurement of momentum p
for the bispectral antineutrino. The applicable quantum mo-
mentum operator herein is ~i ∂q. The orthodox measurement
of momentum of the bispectral ψ2 with box normalization is

over one repetitive cycle. This box length is π/k. The mo-
mentum of ψ2, using (4), (7) and (21), is given by

p =

∫ π/k
0 ψ

†

2 (q) ~i ∂qψ2(q) dq∫ π/k
0 ψ

†

2 (q)ψ2(q) dq

= ~
k
∫ π/k

0 [α2 − β2 + 2αβ sin(2kq)] dq∫ π/k
0 [α2 + β2 + 2αβ cos(2kq)] dq

= ~
(α2 − β2)π

(α2 + β2)π/k
=

~k
α2 + β2 .

(29)

An orthodox measurement of momentum of the bispectral an-
tineutrino (29) is a constant and positive definite, i.e. p > 0,
in the direction of latent incident wave (4). This is consistent
with the quantum trajectory representation where the quan-
tum reduced actionW changes monotonically [14].

Let us extend our examination of p to find under what
conditions [α2 − β2 + 2αβ sin(2kq)], the integrand in the nu-
merator in (29), becomes negative over any portions of its
repetitive cycle. The particular point of interest for investiga-
tion is q = 3π/(4k) where the integrand becomes

[α2 − β2 + 2αβ sin(2kq)]q=3π/(4k) =

=1︷  ︸︸  ︷
α2 − β2 −2αβ. (30)

For |β| sufficiently small, (30) would be positive; sufficiently
large, negative. The |β| for which (30) is nil marks the upper
bound where [α2 − β2 + 2αβ sin(2kq)], the integrand, is never
negative. Because −β2 is a negative quantity, the Schwarz
inequality is not applicable to (30). The right side of (30)
becomes nil for

2αβ = 1. (31)

The particular values of α and |β| that satisfy both Eqs. (7)
and (31) are identified by αthreshold and |βthreshold|. The thresh-
old coefficients separate α, |β|-space into two domains: one
where the integrand is always positive-definite; the other, not
always positive consistent with the value of sin(2kq) in (29).
Eq. (7) for normalization, α2 − β2 = 1, and (31) are sufficient
to resolve αthreshold and |βthreshold| by algebraic means. The so-
lutions for the threshold coefficients are

{αthreshold, βthreshold} =

{(
21/2+1

2

)1/2
,
(

21/2−1
2

)1/2
}
. (32)

The logic relationship

α < / > αthreshold ⇐⇒ |β| < / > |βthreshold|

between α and β follows. If |β| < |βthreshold|, then the integrand
ψ
†

2 (q) (~/i)∂q ψ2(q) of (29) would always be positive (in the
direction of the latent incident wave of (4)) for all q through-
out the repetitive oscillation cycle. If |β| > |βthreshold|, then for
some q, but not a preponderance of q of the repetitive oscilla-
tion cycle, the integrand ψ

†
(~/i)∂q ψ2 would be negative (in
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Fig. 1: The phase displacement due to phase modulation Pmψ as a
function of kq over a Riemann sheet for selected values of F. Both
Pmψ and kq are exhibited in units of radians.

the direction of the latent reflected wave of (4)). Nevertheless,
even if |β| > |βthreshold|, the orthodox measure for momentum
would still remain valid, for (29) yields positive momentum
as α2 − β2 = 1 > 0.

3 Examples

Let us now illustrate with didactic examples how a bispectral
wave function facilitates massless flavor oscillation. We con-
sider the contributions of phase and amplitude modulations
separately. These contributions are examined for the selected
cases given by

(α, β) = (1, 0), (4/151/2, 1/151/2), (2/31/2, 1/31/2),

(4/71/2, 3/71/2).
(33)

These cases are compliant with normalization α2 − β2 = 1
(7). The selected cases may be identified for convenience by
the fraction F ≡ β/α = (α2 − 1)1/2/α = β/(1 − β2)1/2. Also,
F is related to the reflection coefficient (15) for F = R1/2.
The fractions F for the selected cases with respect to (33) are
given by

F = 0, 1/4, 1/2, 3/4. (34)

Comparisons of the effects of either phase or amplitude
modulations among the selected cases of F are developed as
a function of phase kq measured in radians.

The value F = 0 represents a unispectral wave function,
which precludes massless flavor oscillation. The unispec-
tral F = 0 is still included for comparison to the bispectral
Fs where F = 1/4, 1/2, 3/4. For comparison, the value
Fthreshold for 2αβ = 1 with normalization α2 − β2 = 1, which
establishes F’s upper bound for no reversals of sign of the

integrand ψ
†

2 (~/i)∂q ψ2 as a function of q (32) is given by

Fthreshold =
βthreshold

αthreshold
=

(
21/2 − 1
21/2 + 1

)1/2

= 21/2 − 1

=
1

21/2 + 1
= 0.41421356 · · · .

We first consider phase modulation. The phase displace-
ments Pmψ of (18) as a function of kq, where kq is also the
phase of ψ, are exhibited for the various values of F on Fig. 1
over the extended Riemann sheet π/2 ≤ kq ≤ 3π/2 of the
arc tangent function on the right side of (6). The phase dura-
tion of the Riemann sheet is consistent with box normaliza-
tion of ψ2. Each extended Riemann sheet specifies an oscil-
lation cycle. Fig. 1 exhibits one cycle for phase modulation
Pmψ over a Riemann sheet. The cycle of Pmψ for bispec-
tral Fs has one concave segment and one convex segment.
The cycle is repetitive over other Riemann sheets. As ex-
pected, a Pmψ for the unispectral F renders the horizontal
straight line Pmψ = 0. Thus, the unispectral case prohibits
phase modulation, which does not facilitate flavor oscilla-
tion. The absolute value of Pmψ for kq , π/2, π, 3π/2
is shown on Fig. 1 to increase with increasing F. At kq =

π/2, π, 3π/2, the phase difference Pmψ = 0 for all F. These
points kq = π/2, π, 3π/2 for F , 0, are inflection points of
Pmψ with nil curvature, which are between Pmψ’s alternat-
ing concave and convex segments. At these inflection points,
|Pmψ(q)| attains its maximum slope (rate of change with kq).
Had Fig. 1 included the standing-wave case where F = 1,
then, consistent with (10) and (11), it would have generated a
straight line from Pmψ (kq) = (π/2, π/2) to (−π/2, 3/π/2) on
an extended Fig. 1. Had the cases F = −1/4, −1/2, −3/4
been examined instead (e.g. the values of F for the anal-
ogous phase differences for ∂qψ2 would be negative), then
Fig. 1 would have changed its exhibition of the antisymmet-
ric phase modulation from the first-and-third (upper/left-and-
lower/right) quadrants to the second-and-fourth of Fig. 1. The
phase modulation Pmψ is antisymmetric within the Riemann
sheet for

Pmψ (π − kq) = −Pmψ (π + kq), 0 < q < π/2.

Each extended Riemann sheet contains one cycle of Pmψ for
the bispectral ψ2.

For the amplitude modulation, Amψ is examined for F =

0, 1/4, 1/2, 3/4. Again, F = 0 represents the unispectral
case, which does not support flavor oscillation. The ampli-
tude modulations are exhibited on Fig. 2. Positive differences
on Fig. 2 represent a dilation that is an expansion; negative
differences, a contraction. The absolute values of Amψ for
kq , 3π/4, π/4 are shown on Fig. 2 to increase with increas-
ing F. In Fig. 2, Amψ for bispectral F is symmetric with its
convex segments disjointed on the Riemann sheet. In compar-
ing Figs. 1 and 2 for bispectral F = 1/4, 1/2, 3/4, either the
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Fig. 2: The relative amplitude dilation Amψ as a function of kq over
a Riemann sheet for selected values of F. Amψ is dimensionless,
and kq is exhibited in units of radians.

Fig. 3: The relative amplitude dilations due Amψ and Amψ ′ as func-
tions of kq over a Riemann sheet for F = 1/2. For an unbiased
Amψ

′ , k = 1 to facilitate comparison to dimensionless Amψ. The
amplitude modulations are dimensionless, and kq is exhibited in
units of radians.

Pmψ or the Amψ has an extremum where the other is nil. This
ensures that at least one type of modulation of ψ2 is changing
for all q on the extended Riemann sheet π/2 ≤ kq ≤ 3π/2. A
local maximum rate of change of a modulation occurs at its
zero-crossings where the modulation has inflection points be-
tween concave and convex segments as shown by Figs. 1 and
2. The greater (lesser) rate of change of modulation implies
the greater (lesser) opportunity for flavor oscillation. The
modulation extrema, where the rate of change of a particular
modulation is nil, are isolated phase (kq) points where that
particular modulation does not contribute to neutrino oscilla-
tion.

A comparison between the amplitude modulation Amψ of
the bispectral ψ2 (6) and the amplitude modulation Amψ

′ of
the associated bispectral ∂qψ2 (21) are presented in Fig. 3 for
the particular values F = 1/2, and k = 1. As Amψ

′ by (25) has
a linear factor k while Amψ does not, the choice k = 1 makes

Fig. 3 unbiased. The amplitude modulations Amψ and Amψ
′

exhibit the same repetitive periodicity but are displaced in
phase (kq) by the constant π/2 radians. This kq displacement
increases the opportunity for neutrino oscillation for Amψ(kq)
is positive (negative) where Amψ

′ (kq) is negative (positive).
The ratio of amplitudes of ∂qψ2(kq) relative to ψ2(kq) by (6)
and (21) is given as a function of phase (kq) in fractional form
by

∣∣∣∂qψ2(kq)
∣∣∣ :

∣∣∣ψ2(kq)
∣∣∣ ∣∣∣∂qψ2(kq)

∣∣∣∣∣∣ψ2(kq)
∣∣∣ =

Aψ
′ (kq)

Aψ(kq)︸                      ︷︷                      ︸
fractional form

)

= k

︷                               ︸︸                               ︷(
α2 + β2 − 2αβ cos(2kq)
α2 + β2 + 2αβ cos(2kq)

)1/2

.

(35)

On the extended Riemann sheet π/2 ≤ kq ≤ 3π/2, the ratio
Aψ

′ (kq) : Aψ(kq) for F = 1/2 by (33)–(35) has maxima of
3k at kq = π/2, 3π/2; has a minimum of k/3 at kq = π; and
equals k at kq = 3π/4, 5π/4 in accordance with (35). The
values of the extrema of ratio in fractional form (35) may be
generalized and are given on this extended Riemann sheet by

Aψ
′ (kq)

Aψ(kq)

∣∣∣∣
maximum

= k
α + β

α − β
at kq =

π

2
,

3π
2

and
Aψ

′ (kq)

Aψ(kq)

∣∣∣∣
minimum

= k
α − β

α + β
at kq = π.

The nature of (35) implies that its logarithmic presentation
would exhibit for unbiased k = 1 a periodic antisymmetry
within the extended Riemann sheet {π/2 ≤ kq ≤ 3π/2} given
by

ln
Aψ

′ (kq)

Aψ(kq)

 = − ln
Aψ

′ (kq ± π/2)

Aψ(kq ± π/2)

 , for k = 1.

The variation of the ratio (35) is one of the factors that facil-
itate flavor oscillation. On the other hand, the corresponding
ratio for the unispectral case (F = 0) is the constant k for all
q.

A comparison of (9) and (26) shows the relationship be-
tween Pψ(kq) and Pψ

′ (kq) is that the sign of β has changed
(also the sign of the associated F would change). Therefore
Pψ

′ (kq)−π/2 and Pψ(kq) are a half-cycle out of phase. While
the undulations of Pψ

′ and Pψ when summed are in oppo-
sition, their difference is reinforced. Their changing differ-
ence is another factor enabling flavor oscillation. The rel-
ative phase difference 4Pψ

′
,ψ(kq) in radians between Pmψ

′

and Pmψ is reinforced for they are out of phase as shown by

4Pψ
′
,ψ(kq) = Pψ

′ (kq) − Pψ(kq)

= Pψ(kq + π/2) + π/2 − Pψ(kq).
(36)
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Fig. 4: The Phase difference 4Pψ
′
,ψ(kq) as a function of kq over a

Riemann sheet for F = 0, 1/2. Both 4Pψ
′
,ψ(kq) and kq are exhib-

ited in units of radians.

The relative phase difference 4Pψ
′
,ψ(kq) is exhibited on Fig. 4

for F = 1/2 and F = 0 (the unispectral case). For the bis-
pectral case, Fig. 4 also exhibits coherent reinforcement of
the undulations of Pψ

′ and Pψ of 4Pψ
′
,ψ(kq) consistent with

(23). Larger undulations increase the opportunity for flavor
oscillations.

The two factors, the ratio of amplitudes and the phase dif-
ference, describe the relative relationship between ∂qψ and ψ
as a function of phase kq. The ratio of amplitudes (35) and the
phase difference of Fig. 4 each complete one cycle on an ex-
tended Riemann sheet, e.g. π/2 < kq < 3π/2. However, their
respective extrema are displaced by a quarter cycle π/4 from
each other. The phase difference 4Pψ

′
,ψ(kq) has extrema on

the extended Riemann sheet at kq = 3π/4, 5π/4 while the
ratio Aψ

′ : Aψ(kq) has extrema at kq = π/2, π, 3π/2. Where
one factor has an extremum at some particular kq, the other
factor has an inflection point there. And where one factor
has an inflection point, the other has an extremum. A local
extremum for a factor implies that the factor has a local nil
in facilitating flavor oscillation while the other factor having
an inflection point implies a local peak in facilitating flavor
oscillation. Furthermore, where one factor’s support for fla-
vor oscillation decreases, the other factor’s support increases.
Thus, the two factors complement each other to ensure that
the bispectral antineutrino can facilitate possible flavor oscil-
lation for some interaction throughout its repetitive cycle.

Both phase and amplitude modulations exhibit the same
kq periodicity on Figs. 1–4. This may be shown by trigonom-
etry for the general situation. Periodicity of phase modulation
(19) is consistent with the extended Riemann sheet of the arc
tangent,

(2n − 1)π/2 ≤ kq ≤ (2n + 1)π/2, n = 0,±1,±2, · · · .

Hence, Pmψ (kq) = Pmψ (kq + π). Periodicity of amplitude
modulation (20) is consistent with the argument 2kq of the
cosine term in the law of cosines completing its cycle 2π.

Periodicity of Amψ is also given by

Amψ (kq) = Amψ (kq + nπ), n = ±1,±2,±3, · · · .

For completeness, the quantum trajectory representation also
has the same kq periodicity [5].

4 Discussion

Compound modulation makes ∂qψ2 / ψ2 a periodic variable
in phase kq and spatially periodic for a given k. The phase
and amplitude modulations complement each other for they
are a quarter-cycle out of phase with each other as shown by
Figs. 1 and 2. The modulations of ψ2 and ∂qψ2 supplement
each other. The amplitude modulation induces continuous di-
lations with respect to phase kq of the ∂qψ2(q) and ψ2(q) dif-
ferently by (25) and (8) respectively. The dilations of ∂qψ2(q)
and ψ2(q) are opposed: where one is an expansion; the other
is a contraction. These amplitude modulations being in op-
position increase the amount of dilation (either expansion or
contraction) of the ratio

∣∣∣∂qψ2(kq)
∣∣∣ :

∣∣∣ψ2(kq)
∣∣∣ with respect to

phase kq as exhibited by (35) and Fig. 3. This increases the
opportunity for neutrino oscillation. Meanwhile, phase mod-
ulation induces continuous rotations with respect to phase
kq of Pmψ(q) (18) and Pmψ

′ (q) (28). These rotational dis-
placements are opposed: where one rotation is clockwise; the
other, counterclockwise. This opposition in rotations enlarges
4Pψ

′
,ψ(kq) as exhibited by (36) and Fig. 4. This opposition

between the behavior of ψ2(q) and its derivative is typical
of well behaved functions undergoing periodic motion. Note
that either phase or amplitude modulation, by itself, could fa-
cilitate neutrino oscillation of the bispectral antineutrino. To-
gether, they increase the opportunity for oscillation.

The transmutation of coefficients {α, β} → {1, 0} of (14)
by the weak interaction nulls out the compound modulation
of νe’s wave function without any exchange of energy. This
is shown for phase modulation on Fig. 1 and for amplitude
modulation on Fig. 2 where modulation effects decrease with
decreasing absolute values of |F| and are completely nulled at
|F| = 0.

The periodic, nonuniform propagation by a massless an-
tineutrino results in flavor oscillations where the antineutrino
in a particular phase (kq) segment within an oscillation cy-
cle may execute a flavor-compatible current interaction with
C1 continuity of its wave function. Future work may show
that these segments for various flavors {νe, νµ, ντ} may be dis-
jointed, and the segments for the flavors may not densely fill
the oscillation cycle.

Should the segments for the active flavors {νe, νµ, ντ} not
densely fill the oscillation cycle, then the voids of the oscil-
lation cycle would be locations where the antineutrino is in-
active and would behave as the elusive sterile antineutrino
νs [31], [32]. By precept, the sterile antineutrino was hy-
pothesized to be subject only to gravity and explicitly not to
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the weak interaction. The MiniBooNE Collaboration has re-
cently inferred its existence from experiment [31], but such
existence has not yet been independently confirmed by other
ongoing experiments [32]. As the hypothetical sterile an-
tineutrino would not partake in charged current interactions,
the voids in the oscillation cycle could manifest the existence
of this hypothetical sterile antineutrino. This hypothetical
sterile antineutrino, by (2)–(6), could be massless and have
a bispectral wave function. As this hypothetical bispectral
sterile antineutrino could propagate nonuniformly, it would
oscillate in flavor to become an active antineutrino {νe, νµ, ντ}.
Flavor oscillation of the sterile antineutrino would imply that
it would have the same right handedness of the active antineu-
trinos. Again, this support for the existence of the sterile an-
tineutrino is predicated on the existence of voids in the oscil-
lation cycle.

The orthodox measurement of the momentum operator
~
i ∂q acting on a bispectral antineutrino over a box length,
which is consistent with an oscillation cycle, has been shown
by (29) to give a finite positive momentum in the direction of
the latent incident wave (4). An IBD event is a good way to
observe antineutrinos for the antineutrino reacts only to grav-
ity and the weak interaction. Observed momentum, in prin-
ciple, need not be averaged over a box length. Should future
work find that box normalization is too coarse, then restrict-
ing the absolute value of β to |β| ≤ |βthreshold| = [(21/2−1)/2]1/2

(32) would maintain positive momentum for the bispectral
antineutrino throughout the oscillation cycle, i.e.

ψ
†

2 (q)
~

i
∂qψ2(q) > 0

by (30)–(32) for all q within the box normalization.
Future work may also show that the different charged or

neutral current interactions may scramble the flavors. In other
words, the antineutrino flavors may be interaction dependent
where the values of ψ and ∂qψ for some given E at a point
q0 may specify an antineutrino of a particular flavor for an
interaction while concurrently at q0 also specifying a differ-
ent flavor associated with another different interaction. This
would cause the segments for the various flavors of the oscil-
lation cycle to overlap.

Future work may also yield a better understandingofIBDs
and the weak force. Nevertheless, the concept of a bispec-
tral wave function representation should be robust enough to
adjust assumptions and still facilitate flavor oscillation by a
massless antineutrino.

5 Findings and conclusions

The principal finding is the existence of a wave function rep-
resentation for massless neutrino oscillation of flavor, which
is a counterexample to PMNS theory’s finding that m > 0.
The wave function representation for m = 0 is compatible
with an orthodox interpretation of the bispectral wave func-
tion, ψ2. One spectral component represents the embedded

latent incident wave function for an IBD; the other, the em-
bedded latent reflected wave function. Such a bispectral wave
function is capable of flavor oscillations without any need for
mass-eigenstates, which confirms that PMNS theory is not
the exclusive theory for neutrino oscillation. Once created, a
bispectral, massless antineutrino, with super-threshold energy
(E > 1.806 MeV), has the possibility by flavor oscillation to
initiate an IBD.

The co-principal finding, which is extra to the massless
oscillation finding, is that the forceless weak interaction for
this oscillation model transmutes the wave function of the an-
tineutrino from bispectral to unispectral. There is no energy
exchange during the transmutation for the weak interaction is
forceless. In general, the weak interaction can transmute the
wave function to a different superposition of its set of inde-
pendent solutions without any exchange of energy.

The first secondary finding is that flavor oscillations are
compatible with classifying neutrinos to be Majorana leptons.

The second secondary finding is that the elusive sterile
neutrino may be just where the antineutrino is in a location,
q, in the oscillation cycle where its values {ψ2, ∂qψ2}|q are in-
compatible initial values for initiating a current interaction of
any flavor there (sterile is not a flavor). This finding is predi-
cated upon the existence of such a location in the oscillation
cycle.

The third secondary finding establishes a relationship be-
tween the amplitude β of the latent embedded reflected wave
and the opportunity to observe negative momentum,
i.e., ψ

†

2 (q) ~i ∂qψ2(q) < 0. There exists a βthreshold for which,

if |β| < |βthreshold|, then ψ
†

2 (q) ~i ∂qψ2(q) > 0 for all q before an
IBD. For cases of super-threshold |β|, the orthodox quantum
measurement of momentum over one repetitive box length
would still yield positive momentum (29).

The fourth secondary finding confirms the similar pre-
diction for massless neutrino oscillation by the less familiar
quantum trajectory representation of quantum mechanics [5].
This finding also substantiates that wave mechanics and quan-
tum trajectories are equivalent for free particles [7], [33]. In
addition, incisive insights rendered by the wave function rep-
resentation complement those of the trajectory representation
to substantiate massless neutrino oscillation.

A tertiary finding supports Pontecorvo’s suggestion [28]
that a neutrino may be composed of a mixture of neutrino and
antineutrino components.

In conclusion, massless neutrino oscillation implies the
validity of the standard model to consider neutrinos to be
massless.

A co-conclusion is that the forceless weak interaction pre-
pares the antineutrino for interaction with other particles by
transmuting the antineutrino’s wave function. The transmu-
tation changes the wave function in this ab initio calculation
from a bispectral wave function to a unispectral wave func-
tion exp(ikq) without an exchange of energy. Conversely, the
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wave function of the antineutrino manifests the effects of the
forceless weak interaction by a change in the superposition of
its independent solutions for a given energy.

A secondary conclusion is the confirmation of the similar
prediction of the validity of the standard model by the quan-
tum trajectory representation, which substantiates that such a
prediction is not an anomaly of the quantum trajectory repre-
sentation.
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