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How to Couple the Space-Time Curvature With the Yang-Mills Theory

Patrick Marquet
Calais, France. E-mail: patrick.marquet6@wanadoo.fr

We suggest here a new approach to couple space-time curvature with the three funda-
mental forces (interactions) of the standard model described by the Yang-Mills Theory.
This is achieved through the extension of the Einstein tensor in the framework of the
Weyl formalism (Weyl-Einstein tensor) which is known to exhibit a particular 4-vector
referred to as the Weyl-Einstein vector. The Weyl-Einstein manifold so de�ned admits
a tangent Minkowski space at a given point, where this particular vector asymptotically
identi�es with the Yang-Mills gauge �eld vectors. As a result, the Weyl-Einstein ten-
sor implicitly interacts with the particles’ masses and �elds provided by the Yang-Mills
equations. Assuming that the principle of equivalence always holds, a very simple grand
uni�cation with gravity could be achieved in this way.

Notations

Space-time Greek indices� , � run from 0, 1, 2, 3 for local
coordinates.
Latin indicesa, b are the group indices.
Space-time signature is� 2.
We assume here thatc = 1.

Introduction

Fields� are used to describe the fundamental particles known
in modern physics. In Quantum Electrodynamics such �elds
associated with these particles must be chosen consistent with
the symmetries in nature which include for example the
space-time symmetries of Special Relativity. The �elds	
are either scalars (neutral or charged) with spin-zero/spin-1
particles, or fermions with spin-1

2 particles. Initially, it was
thought that these symmetries should be global symmetries,
not depending on the position in space and time. However, it
is well known that the laws of electromagnetism possess an-
other local symmetry, in which charge is locally conserved,
meaning that charged �elds have a phase (in the exponent)
that varies freely from point to point. This feat led Yang
and Mills to suggest that local symmetries be extended from
this U(1) group to nonAbelian symmetriesbased onlocal
gauge invariance which open the way to unify the electro-
magnetism, weak and strong interactions: U(1)� SU(2) �
SU(3) is today known as thestandard modelelaborated by
Glashow, Weinberg, Salam and Ward (1979 Nobel Prize). As
we know, this theory implies the existence ofgauge �elds
A� (x), which are necessarily part of a new covariant deriva-
tive D� = @� � i eAm(x), where e is a coupling constant (see
§2.1). In a curved space-time, the classical theory makes use
of the Riemann derivativer � , and D� is thus generalized to
r � � i eA� (x) (see, for example, [1, p. 68]). However, the gauge
�elds A� (x), do not account for the space-time curvature ex-
cept in the case of the electromagnetic �eld alone through the
Einstein �eld equations.

Herein, we tackle this problem in a di� erent way:
a) We start by de�ning aWeyl connectionthat exhibits

a particular 4-vector (Weyl-Einstein vector) which in-
duces extended curvature tensors;

b) From these curvatures is inferred theWeyl-Einstein ten-
sor which is conceptually conserved like its standard
counterpart which it generalizes;

c) A simple relation is established whereby the Weyl-
Einstein 4-vector is asymptotically related to the Yang-
Mills �eld vectors.

All three contributions (electromagnetic, weak and strong
interactions) are then permitted to interact with the Weyl-
Einstein 4-tensor through their respective gauge �eld vectors
alone. A simple grand uni�cation could be achieved through
this particular coupling.

1 The Weyl-Einstein tensor

1.1 The curvatures

1.1.1 General issues

Following Lichnerowicz [2], we start by de�ning thesym-
metric Weyl-Einstein connectionon a semi-metric 4-manifold
denoted byM, i.e.

W �
�� = � �

�� �
1
2

g�� (g�� J� + g�� J� � g�� J� ) (1:1)

or, in another form,

W �
�� = � �

�� �
1
2

(� �
� J� + � �

� J� � g�� J � ) : (1:1bis)

From the pointm in the neighbourhood of the Lorentz
manifold denoted (M;g), where9 is a congruence of di� er-
entiable lines such that8m02 (M;g), we may have the con-
formal metric

ds2
W = eJds2; (1:1ter)

whereJ =
Rm0

m J� dx� .
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In general, the formdJ= J� dx� is non-integrable. The
4-vectorJ� is referred to as theWeyl-Einstein vector.

1.1.2 The Weyl-Einstein 4th rank curvature tensor

With the Weyl connectionW�
�� we construct theWeyl-Einstein

curvature tensorwhich is assumed to have the standard form
of the Riemann-Christo� el tensor

(R�
��� )W = @� W �

�� � @� W �
�� + W �

�� W �
�� � W �

�� W �
�� : (1:2)

Inspection shows that the following identity takes place

(R�
��� )W + (R�

��� )W + (R�
��� )W = 0 : (1:3)

Using the Riemann covariant derivative denoted using a
semi-colon, the Bianchi identity also reads

(R�
��� )W ; � + (R�

��� )W ; � + (R�
��� )W ; � = 0 : (1:3bis)

Let us now express (R���� )W with the metric connection
r � . Setting (� �

�� )J = 1
2 (� �

� J� + � �
� J� � g�� J � ), we obtain

(R���� )W = R���� + g�� r � (� �
�� )J �

�
1
2

g��
h
r � (� �

�� )J + r � (� �
�� )J

i
+

+ g��
h
(� �

�� )J(� �
�� )J � (� �

�� )J(� �
�� )J

i
+

+ g��
h
@� (� �

�� )J � @� (� �
�� )J

i
:

(1:4)

1.1.3 The Weyl-Einstein 2nd rank tensor

Relation (1.4) eventually leads to the contracted tensor

(R�
��� )W = (R�� )W = R�� + r � (� �

�� )J � r � (� �
�� )J +

+ (� �
�� )J(� �

�� )J � (� �
�� )J(�

�
�� )J

we then have the splitting

(R�� )W = (R(�� ))W + (R[�� ])W ; (1:5)

where

(R(�� ))W = R�� + r � (� �
�� )J �

1
2

h
r � (� �

�� )J + r � (� �
�� )J

i
+

+ (� �
�� )J(� �

�� )J � (� �
�� )J(�

�
�� )J ;

(1:6)

(R[�� ])W = @� (� �
�� )J � @� (� �

�� )J : (1:6bis)

So forth, we check that (� �
�� )J = 1

2 (� �
� J� + � �

� J� � g�� J � ) =
1
2 (J� + 4J� � J� ) = 2J� . Thus we get

(R(�� ))W = R�� �
1
2

(g�� r � J � + J� J� ) ; (1:7)

(R[�� ])W = 2 (@� J� � @� J� ) = 2J�� : (1:8)

1.1.4 The Weyl-Einstein curvature scalar

Applying the contractionRW = g �� (R�� )W, one obtains

RW = R � r �
h
g�� (� �

�� )J
i

� r �
h
g�� (� �

�� )J
i
�

� g��
h
(� �

�� )J(� �
�� )J � (� �

�� )J(�
�
�� )J

i
;

(1:9)

i.e.,

RW = R �
 
r � J � +

1
2

J2
!
: (1:10)

1.2 The Weyl-Einstein tensor

Here we omit the subscriptW for clarity. Unlike the Riemann-
Christo� el curvature tensor, the Weyl curvature tensor is no
longer antisymmetric on the pair of indices��

R���� + R���� = g�� J�� ; (1:11)

or, in another form,

R��
�� + R��

�� = g �� J�� : (1:11bis)

Raising the index� in the equation (1.3bis) and contract-
ing on � and� as well as on� and� , we obtain

R��
�� ; � + R��

�� ; � = 0 : (1:12)

We next replaceR��
�� by its value taken from (1.11bis),

and we eventually �nd

R��
�� ; � + 2R��

�� ; � + 2g �� J�� ; � = 0 ; (1:13)
 
R(� )

(� ) �
1
2

� �
� R

!

; �
= � J �

� ; � ; (1:14)

which is just the conservation law for the tensor (re-instating
the subscriptW and changing the indices)

(G�� )W = (R(�� ))W �
1
2

�
g�� RW � 2J��

�
: (1:15)

We call (G�� )W the Weyl-Einstein tensorexpressed with
the Riemannian derivatives. Lets us note that (G�� )W is no
longer symmetric. In the pure Riemannian regime, this tensor
obviously reduces to the usual Einstein tensor

G�� = R�� �
1
2

g�� R: (1:16)

2 The uni�cation

2.1 A short overview of the Yang-Mills theory

2.1.1 The principle of gauge invariance

Let us recall that a general Lie group G is de�ned by the rep-
resentation of a group element denoted U in terms of its gen-
erators Ta

U = exp
0
BBBBB@� i e

nX

a=1

Taka

1
CCCCCA; (2:1)
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where e is a coupling constant generalizing the fundamental
electronic chargee in the electromagnetic case. The group el-
ement U is de�ned by the values of theN constants ka, and Ta

are hermitian generators satisfying the associated Lie algebra

[Ta; Tb] = i CabcTc ; (2:2)

where Cabc are the real antisymmetric structure constants de-
�ning the algebra.

The SU(2) group is de�ned in terms of the set of alluni-
tary unimodular matriceswith (2 � 2) complex elements. The
related constraints are known to be

detkUk = 1 ; (2:3)

U+U = UU+ = I ; (2:4)

where I is the unit matrix, and U+ is the Hermitian conjugate
of the matrix U.

2.1.2 Electromagnetism and local gauge invariance U(1)

Consider non-hermitian complex charged scalar �elds written
in terms of the real �elds� 1(x) and� 2(x)

� (x) =
1
p

2
[� 1(x) + i � 2(x)] ; (2:5)

� +(x) =
1
p

2
[� 1(x) � i � 2(x)] :

The classical Lagrangian for this charged scalar �eld is

L = @� � + @� � � m2� + � ; (2:6)

where the �rst term corresponds to thekinetic energyof the
scalar �eld, and the second thepotential energyof the mas-
sive �eld (mass of the charged particle).

Noether’s theorem states that the symmetry of charge con-
servation is equivalent to the invariance ofL under the group
U(1) of continuous phase rotations, speci�ed by a single pa-
rameter k.

We then check that this Lagrangian is invariant under the
continuous group of phase rotations of� called theglobal
Abelian gauge groupU(1)

� (x) ! � (x) expi k ; (2:7)

� +(x) ! � (x) exp (� i k) ; (2:7bis)

with the real parameter k.
Eqs. (2.7) and (2.7bis) should be true even when the pa-

rameter k depends onx � , thus the phase di� erence between
distinct space-time points isunobservable: it is called thelo-
cal gauge invariance principle. However inspection shows
that the kinetic energy Lagrangian@� � +@� � is not invariant
under the local gauge transformation

� (x) ! � (x) exp (� i k) Q(x) : (2:8)

This is because the derivative may now operate on the
variable parameter k(x). To remedy this problem one is forced
to introduce a new covariant derivative

D� = @� � i eA� (x) ; (2:9)

whereQ is the quantity of the charges of the �elds� which
is proportional to the fundamental electronic unit e.

Here, the vector �eldA� (x) transforms as

A� (x) ! A� (x) + @� k(x) : (2:10)

Hence, it is also necessary to include a kinetic energy term
in L which takes into account the introduction of the new
gauge �eldA� (x). This is achieved by adding the term

(L )kin
A = �

1
4

F �� F�� ; (2:11)

where we retrieve the electromagnetic �eld strength tensor

F�� = @� A� � @� A� : (2:12)

The new Lagrangian is now

L = �
1
4

F �� F�� + L 0[� ; � + D� � D� � + ] : (2:13)

The tensorF�� is obviously invariant under the gauge
transformation of (2.8), so (L )kin

A is also gauge invariant. This
symmetry group is the Abelian group U(1) with a single com-
muting generator T1 = Q satisfying

[T1; T1] = 0 : (2:14)

Unlike the classical theory, the equations of motion are
obtained by varying the actionL with respect toA� for the
�xed � , i.e.,

@�

"
L

@(@� A� (x))

#
�

@L
@A� (x)

= 0 ; (2:15)

or, in another form,

@� F �� (x) =
@L

@A� (x)
: (2:16)

From this equation, the current density is easily inferred

I � (x) = �
1
e

@L
@A� (x)

; (2:17)

I � (x) = i
"
� +(x)

@L
@(D� � +)

� � � +(x)
@L

D� � +

#
; (2:18)

which is conserved
@� I � = 0 : (2:19)

The associated charge is given by

Q =
Z

I0(x) d3x =
Z

i
n
� + D� � � D � � + �

o
d3x ; (2:20)
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which also remains unchanged with time

dQ
dt

= 0 ; (2:21)

Z
@x0 I0(x) d3x = 0 ; (2:22)

or, equivalently,
R

@� I � (x) d3x = 0.
This result is formally equivalent to the classical theory,

but it also shows that this new approach remains a particu-
lar case of a higher symmetry principle which rules modern
physics.

2.2 The uni�cation

2.2.1 The gauge invariance of the Weyl-Einstein connec-
tion

If we were to de�ne a Weyl-Einstein covariant derivative just
as in (2.9), the connection coe� cients W�

�� should be invari-
ant under the conformal relation

g�� ! Ug�� ; (2:23)

whereU(x) > 0 is a real scalar. Conformal invariance is
here simply achieved by implementing the additional gauge
condition

J� ! J� � @� U (2:24)

as oneself can be easily convinced.

2.2.2 The Weyl-Einstein-Yang-Mills relation

Let us consider the time-like geodesicdsW spanned by the
connexion coe� cients W�

�� (1.1ter). To this geodesic is as-
sociated the 1-formdJ = J� dx� . Likewise, we write the
Minkowskian line element asds to which we associate the
Yang-Mills 1-formdA = A� dx� whereA� is the generic term
that stands for every gauge �eld of any of the �rst three Yang-
Mills interactions. A speci�c uni�cation between the Yang-
Mills theory and space-time curvature can be thus achieved
through the interaction between the Yang-Mills gauge �eld
and vectors and the Weyl-Einstein vectorJ� . Such a relation
can be set so as to maintain the euclidean character of the
Yang-Mills theory within the Weyl-Einstein formalism. To
this end, we write

dJ
dA

= 1 + ln
 
dsW

ds

!
; (2:25)

dJ = dA
"
1 + ln

 
dsW

ds

!#
: (2:26)

WhendsW ! ds, the 4-vectorJ� identi�es with the Yang-
Mills gauge �eld vector.

The Yang-Mills physics always takes place in the Min-
kowski space that is asymptotic to the genuine Weyl-Einstein

manifold M. In this way, the vectorJ� inherent to space-
time curvature is regarded as �embedding� all the Yang-Mills
gauge �elds thereby providing a speci�c uni�cation as de-
scribed below.

2.3 Application to the Yang-Mills interactions

2.3.1 The weak interaction (SU(2) symmetry)

Writing classically the group element as

U = exp
�

� i hTaka
�

; a = 1;2;3 ; (2:27)

with the generators

Ta =
� a

2
; (2:28)

where� a are the three 2� 2 Pauli spin matrices

� 1 =
 

0 1
1 0

!
; � 2 =

 
0 � i
i 0

!
; � 3 =

 
1 0
0 � 1

!
; (2:29)

which satisfy [4, p. 2]

Tr
 
� a

2
� b

2

!
=

1
2

� ab; (2:30)

Tr
� a

2
= 0 : (2:31)

Here we must introduce three vector gauge �eldsBa
� ,

which are conveniently represented by the vector �eld

B� (x) = TaBa� (x) : (2:32)

The transformation properties ofB� are obtained from :

B� (x) ! B� (x) � Ta@� ka(x) + i hka(x) [Ta; B� (x)] ; (2:33)

where h is the relevant coupling constant.
Here Ta satisfy the commutation relations with di� erent

structure constants

[Ta; Tb] = i fabcTc : (2:34)

Using (2.30) in (2.33), then multiplying by Tb and taking
the trace, we have the transformations laws of the individual
gauge �eldBa

� (x)

Ba
� (x) ! Ba

� (x) � @� ka(x) + h fa
bckb(x)Bc

� (x) ; (2:35)

and the general form of the covariant derivative is

D� = @� � i hB� : (2:36)

The SU(2) group relevant for matter representation is de-
termined by the generators Ta, so that (2.36) is expressed by

D� = @� � i hBa� Ta; (2:37)

whereB� is here related toJ� through equation (2.26).
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2.3.2 The SU(3) symmetry

We �nally illustrate the strong interaction (gluons) by de�n-
ing the non-Abelian symmetry SU(3) whose elementary
group element with 8 real parameters reads

U = exp
�
� i g

� a

2
ka

�
; a = 1; : : : ;8 : (2:38)

The � a are the eight Gell-Mann 3� 3 Hermitian traceless
matrices [5]

� 1 =

0
BBBBBBBB@

0 1 0
1 0 0
0 0 0

1
CCCCCCCCA; � 2 =

0
BBBBBBBB@

0 � i 0
i 0 0
0 0 0

1
CCCCCCCCA;

� 3 =

0
BBBBBBBB@

1 0 0
0 � 1 0
0 0 0

1
CCCCCCCCA; � 4 =

0
BBBBBBBB@

0 0 1
0 0 0
1 0 0

1
CCCCCCCCA;

� 5 =

0
BBBBBBBB@

0 0 � i
0 0 0
i 0 0

1
CCCCCCCCA; � 6 =

0
BBBBBBBB@

0 0 0
0 0 1
0 1 0

1
CCCCCCCCA;

� 7 =

0
BBBBBBBB@

0 0 0
0 0 � i
0 i 0

1
CCCCCCCCA; � 8 =

0
BBBBBBBB@

1 0 0
0 1 0
0 0 � 2

1
CCCCCCCCA;

and the representation of SU(3) acting on the matter �eld
triplet

 (x) =
 1
 2
 3

(2:39)

is just the group element U. Accordingly, the Lagrangian for
the SU(3) gauge bosons interacting with the above fermion
triplet can be computed to give

L = �
1
4

F ��
k F k

�� + i �  a  �
k

"
@� � i gSk

�

� �
2

� a

a0

#
 a0

; (2:40)

where�  a is the complex conjugate spinor and where the �eld
strength tensor is

F ��
k = @� S�

k(x) + g eln
k kn(x)F �

l F �
n ; k; l;n = 1; : : : ;8 : (2:41)

Here, we have the correspondenceS � ! J � .

2.3.3 Example of the gauge group U(1)� SU(2)

Using (2.29), we can construct explicit examples of the gener-
ators Ta needed to describe the transformation of matter mul-
tiplet under SU(2) which we will couple with the electromag-
netic boson under U(1). We �rst introduce three vector gauge
�elds Ba

� which may be written in the form [6, p. 53, eq. 2.91]

B� =
� � a

2

�
Ba

� =
1
2

�������

B3
� B1

� � i B2
�

B1
� + i B2

� � B3
�

�������
: (2:42)

These are the gauge bosons transforming as the adjoint of
SU(2) we couple with the gauge boson transforming as U(1).

The kinetic term of the resulting Lagrangian is given by

(L )kin = �
1
4

(Ba
�� B ��

a + F �� F�� ) : (2:43)

Here, the combinationC� = B� + A� which takes place in
the Euclidean tangent space is identi�ed to the Weyl-Einstein
4-vectorJ� at this point.

All these examples illustrate how the Yang-Mills gauge
�eld vectors actually interact with the Weyl-Einstein 4-vector
through equation (2.26).

Conclusion

In this short paper, we have only sketched a possible repre-
sentation of how space-time curvature can couple with the
Yang-Mills Theory in a non-trivial way.

For each type of interaction, we show that the Yang-Mills
gauge �elds are asymptotically connected to the space-time
curvature through the Weyl-Einstein 4-vector. This amounts
to state that the �rst three interactions are de�ned in the eu-
clidean space-time which is tangent to the Weyl-Einstein
manifold at the point where this 4-gauge vector is chosen.

This particular interaction appears as a new coupling be-
tween the Weyl-Einstein space-time geometry and the various
particles/�elds satisfying the Yang-Mills theory. In a sense,
such a coupling could be regarded as the realization of a new
representation of Einstein’s �eld equations with a source. In
the classical General Relativity, the Riemannian �eld equa-
tions disregard the Weyl-Einstein vector and they just dis-
play an energy-momentum tensor on the right hand side as
a source. The insertion of such a tensor was never entirely
satisfactory to Einstein’s opinion who always claimed that
the right hand side of his equations was somewhat �clumsy�.
Einstein’s argument should not be hastily dismissed: indeed,
while his tensor exhibits a conceptually conserved property,
the energy-momentum tensor as a source does not, which
leaves the theory with a major inconsistency [7]. For a mas-
sive tensor, the problem has been cured by introducing the so-
called pseudo-tensor that conveniently describes the gravita-
tional �eld of the mass so that the 4-momentum vector of both
matter and its gravity is conserved (for example, the Einstein-
Dirac pseudo-density) [8, 9]. Unfortunately by essence, this
pseudo-tensor can be transformed away at any point by a
change of coordinates that naturally shows the non-localiz-
ability of the gravitational energy [10]. At any rate, a pseudo-
tensor is not suitable to be represented on the right hand side
of the �eld equations. This is of course a stumbling-block
which has plagued General Relativity for more than a century.
Moreover, unlike the Einstein tensor, the energy-momentum
tensors are mainly antisymmetric and symmetrization is thus
always required �afterwards� through the Belinfante proce-
dure. To evade the initial problem one is led to introduce
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a vacuum energy-momentum �eld energy that is �excited�
in the vicinity of a mass to produce the gravitational �eld
[11, 12]. Far from the mass, this (real) vacuum energy tensor
never vanishes and guarantees the conservation of the source
tensor on the right hand side of the �eld equations. How-
ever, several constraints are needed to be implemented which
might be viewed as a loss of generality of the theory [13].

Let us note in passing that the most important Einstein so-
lutions are derived from source-free equations as for example
the famous Schwarzschild metric [14]. In the frame of our
theory, the �eld equations in the post-Newtonian approxima-
tion should certainly deserve further scrutiny which is beyond
the scope of this paper. In conclusion, we suggest here to cor-
relate gauge �elds so that uni�cation of the three fundamental
interactions with Einstein’s General Theory of Relativity can
be achieved in a very simple way. The principle of equiv-
alence implies that gravity is thus indirectly related to each
type of particles described in the Yang-Mills Theory.

Many topics such as the fermion and scalar quantum num-
bers in the electroweak model, or the spontaneous symme-
try breakdown and the Higgs mechanism have not been dis-
cussed here.

We are however convinced that the introduction of the
Weyl-Einstein formalism in the theory does not con�ict with
these results, and that it constitutes one of the permissible
unifying theory between gauge theories.

Submitted on June 2, 2022
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In systems of coupled periodic processes, lasting frequency ratios can cause signi�cant
physical e� ects, which depend on the type of real numbers the ratios are approximating.
Rational frequency ratios can cause parametric resonance and ampli�cation, while ap-
proaching irrational frequency ratios can avoid them. In this paper we discuss physical
e� ects that can be caused by frequency ratios approximating some irrational algebraic
and transcendental numbers. We illustrate this approach on some features of the solar
system which are still unexplained.

Introduction

In this paper, we introduce an approach that bases on the
physical interpretation of certain statements of the number
theory. In modern theoretical physics, numerical ratios usu-
ally remain outside the realm of theoretical interest. In this
work we try to elucidate the physical meaning of numerical
ratios and to show their theoretical and practical importance
for resolving some fundamental problems of physics.

One of the unsolved fundamental problems in physics [1]
is the stability of systems of a large number of coupled pe-
riodic processes, for instance, the stability of planetary sys-
tems. If numerous bodies are considered to be gravitationally
bound to one another, perturbation models predict long-term
highly unstable states [2] that contradict the physical reality
of the solar system and thousands of exoplanetary systems.

In our previous publications we have applied our numeric-
physical approach to the analysis of the orbital and rotational
periods of the planets, planetoids and moons of the solar sys-
tem and thousands of exoplanets [3] with the conclusion that
the avoidance of orbital and rotational parametric resonances
by approximation of transcendental ratios can be viewed as a
basic forming factor of planetary systems [4].

Another unsolved fundamental problem is the imperisha-
bility of motion and interaction, and the inexhaustibility of
energy. This question seems to be out of the realms of mod-
ern physics. Indeed, until now, all the sources of energy we
are currently using � from electricity to radioactivity � were
discovered by chance. This fact and the incapacity of invent-
ing new energy sources evidences the lack of comprehention.
For instance, the research of the predicted thermonuclear fu-
sion has been going on for 60 years without success [5,6].

Likewise, the nature of gravitational energy is still a mys-
tery [7]. For instance, what is the propelling force of the or-
bital motion? Naturally, there is no propelling of orbital mo-
tion, the planets are in perpetual free fall. However, the orbital
velocity of a planet is very high, 30 kilometers per second in
the case of the Earth. The impulse of a planet is therefore
enormous and sweeps away everything that gets in its trajec-
tory. Where does this kinetic energy come from? Perhaps,

this question seems naive to the physicist who is ready to an-
swer immediately: Besides the primordial kinetic energy of
the protoplanetary disk, the potential energy of the gravity
�eld of the star is the source of the kinetic energy of plane-
tary motion. However, this answer only readdresses the ques-
tion. Then what is the source of gravitational energy? Is it
the alleged ability of a mass to curve space-time? Then what
causes this ability?

Obviously, the concept of mass is not complete since the
numerical values of particle masses still remain a mystery.
Where do the observed masses of elementary particles come
from? This is the biggest, and oldest, unresolved enigma in
fundamental particle physics. There is the widespread, but
erroneous, belief that the Higgs boson resolves the origin of
particle masses. This is not the case. It merely replaces one
set of unknown parameters (particle rest energies) with an
equally unknown set of parameters (coupling constants to the
Higgs �eld), so nothing is gained in the fundamental under-
standing of masses [8].

Is there a hidden inexhaustible source of energy in the uni-
verse? Then why can energy not be generated or consumed,
but only converted?

The earliest constants of motion discovered were momen-
tum and kinetic energy, which were proposed in the 17th cen-
tury by Ren·e Descartes and Gottfried Leibniz on the basis of
collision experiments, and later re�ned by Euler, Lagrange,
d’Alembert and Hamilton. In theoretical physics, Noether’s
�rst theorem connects the conservation of energy with the ho-
mogeneity of time, supposing that the laws of physics do not
change over time. Noether’s theorem states that conservation
laws apply in a physical system with conservative forces. A
conservative force is a force with the property that the total
work done in moving a particle between two points is inde-
pendent of the path taken. Equivalently, if a particle travels in
a closed loop, the total work done by a conservative force is
zero. In short, a conservative force is a force that conserves
energy. Hence, Noether’s theorem leads to circular reasoning.
It does not explain the cause of energy conservation [9]. Per-
haps, no physical principle can explain the origin of energy,
because every physical process presupposes the existence of
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another physical process that serves as its energy source. This
non ending chain of energy converters suggests that the im-
perishability of motion and interaction, and the inexhaustibil-
ity of energy must have a non-physical cause.

Our numeric-physical approach leads us to the conclusion
that motion and interaction, including energy as well as other
constants of motion are caused by attractors of numeric �elds.
We illustrate this conclusion on some features of the solar
system which are still unexplained.

Theoretical Approach

The starting point of our approach is frequency as obliga-
tory characteristic of a periodic process. As the result of a
measurement is always aratio of physical quantities, one can
measure onlyratiosof frequencies. This ratio is always a real
number. Being a real value, a frequency ratio can approxi-
mate an integer, rational, irrational algebraic or transcenden-
tal number. In [10] we have shown that the di� erence be-
tween rational, irrational algebraic and transcendental num-
bers is not only a mathematical task, but it is also an essen-
tial aspect of stability in systems of bound periodic processes.
For instance, integer frequency ratios, in particular fractions
of small integers, make possible parametric resonance that
can destabilize such a system [11, 12]. This is why asteroids
cannot maintain orbits that are unstable because of their reso-
nance with Jupiter [13]. These orbits form the Kirkwood gaps
that are areas in the asteroid belt where asteroids are absent.

According to this idea, irrational ratios should not cause
destabilizing resonance interactions, because irrational num-
bers cannot be represented as a ratio of integers. However, al-
gebraic irrational numbers, being real roots of algebraic equa-
tions, can be converted to rational numbers by multiplica-
tion. For example, the algebraic irrational number

p
2 =

1:41421: : : cannot become a frequency scaling factor in real
systems of coupled periodic processes, because

p
2 �

p
2 = 2

creates the conditions for the occurrence of parametric reso-
nance. Thus, only transcendental ratios can prevent paramet-
ric resonance, because they cannot be converted to rational
or integer numbers by multiplication. Actually, it is tran-
scendental numbers, that de�ne the preferred frequency ra-
tios which allow to avoid destabilizing resonance [14]. In this
way, transcendental frequency ratios sustain the lasting stabil-
ity of coupled periodic processes. With reference to the evo-
lution of a planetary system and its stability, we may therefore
expect that the ratio of any two orbital periods should �nally
approximate a transcendental number [15].

However, the issue is to clarify the type of number a mea-
sured ratio corresponds to. Because of the �nite resolution of
any measurement, there is no possibility to know it for sure.
The obtained value is always an approximation and therefore,
it is very important to know the amount of its uncertainty.

It is remarkable that approximation interconnects all types
of real numbers � rational, irrational algebraic and transcen-

dental. In 1950, Aleksandr Khinchin [16] made a very impor-
tant discovery: He could demonstrate that simple continued
fractions deliver biunique representations of all real numbers,
rational and irrational. Whereas in�nite continued fractions
represent irrational numbers, �nite continued fractions rep-
resent always rational numbers. In this way, any irrational
number can be approximated by �nite continued fractions,
which are the convergents and deliver always its nearest and
quickest rational approximation.

It is notable that the best rational approximation of an ir-
rational number by a �nite continued fraction is not a task
of computation, but only an act of termination of the con-
tinued fraction recursion. For example, the golden ratio� =
(
p

5+1)/2 = 1.618. . . has a biunique representation as simple
continued fraction that contains only the number 1:

� = 1 +
1

1 +
1

1 +
1

1 + : : :

As the continued fraction of� is periodic, it meets a quadratic
equation evidencing that� is algebraic:

� = 1 +
1
�

� 2 � � � 1 = 0

In order to save space, in the following we use angle brackets
to write down continued fractions, for example the golden ra-
tio � = h1; 1; 1; : : :i . So long as the sequence of denominators
is considered as in�nite, this continued fraction represents the
irrational number� . If the continued fraction will be trun-
cated, the sequence of denominators will be �nite and we get
a convergent that is always the nearest rational approximation
of the irrational number� .

In the case of� , the approximation process is very slow
because of the small denominators. Only the 10th approxima-
tion gives the correct third decimal of� . In fact, the denomi-
nators in the continued fraction of� are the smallest possible
and consequently, the approximation speed is the lowest pos-
sible. The golden ratio� is therefore treated as the ‘most
irrational’ number in the sense that a good approximation of
� by rational numbers cannot be given with small quotients.
On the contrary, transcendental numbers can be approximated
exceptionally well by rational numbers, because their contin-
ued fractions contain large denominators and can be truncated
with minimum loss of precision. For instance, the simple con-
tinued fraction of Archimedes’ number� = 3:1415927: : : =
h3; 7;15;1;292; : : :i delivers the following sequence of ratio-
nal approximations:

h3i = 3
h3; 7i = 22=7 = 3:142857
h3; 7;15i = 3:14150943396226
h3; 7;15;1i = 3:1415929: : :
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Already the 2nd approximation delivers the �rst two decimals
correctly. Therefore, 22/7 is a widely used Diophantine ap-
proximation of� . The 4th approximation shows already six
correct decimals. This special arithmetic property of contin-
ued fractions [17] of transcendental numbers has the conse-
quence that transcendental numbers are distributed near by ra-
tional numbers of small quotients or close to integers, likee3

= 20.08. . . or� 3 = 31.006. . . . This can create the impression
that complex systems like the solar system provide ratios of
physical quantities that approximate rational numbers. More
likely, they approximate transcendental numbers [4], which
are located close to rational numbers.

Naturally, a continued fraction of� or any other real tran-
scendental number cannot be periodic, otherwise it would
meet an algebraic equation. For example, the continued frac-
tions of the algebraic irrationals

p
2 = h1; 2;2;2; : : :i andp

3 = h1; 1;2;1;2; : : :i are periodic. In contrast to them, a
generalized continued fraction of Euler’s number contains all
natural numbers in sequence as numerators and denominators
and therefore, it cannot be periodic:

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + : : :
The following generalized continued fraction [18] of� con-
tains all natural numbers factorizing the numerators:

� = 2 +
2

1 +
1 � 2

1 +
2 � 3

1 +
3 � 4

1 + : : :
These continued fractions do not only evidence that� ande
are not algebraic, but make comprehensible the increase of
the approximation speed with every next convergent. In ad-
dition, it becomes clear that Archimedes’ number� can be
approximated faster than Euler’s numbere.

Among all transcendental numbers, Euler’s numbere =
2.71828. . . is unique, because its real power functionex co-
incides with its own derivatives. In the consequence, Euler’s
number allows avoiding parametric resonance between any
coupled periodic processes including their derivatives.

Because of this unique property of Euler’s number, we ex-
pect that periodic processes in real systems prefer frequency
ratios close to Euler’s number and its roots. The natural loga-
rithms of those frequency ratios are therefore close to integer
0; � 1; � 2; : : : or rational � 1=2; � 1=3; � 1=4; : : : values. For
rational exponents, the natural exponential function is always
transcendental [19]. Since every rational number has a biu-
nique representation as a simple �nite continued fraction, we

can represent the logarithms of the frequency ratios we are
looking for as �nite continued fractions:

ln (! A=! B) = F = hn0; n1;n2; : : : ;nki (1)

! A and ! B are the angular frequencies of two bound peri-
odic processes A and B avoiding parametric resonance. We
use angle brackets for continued fractions. All denominators
n1;n2; : : : ;nk of a continued fraction including the free link
n0 are integer numbers. All numerators equal 1. The length
of a continued fraction is given by the numberk of layers.

The canonical form (all numerators equal 1) does not limit
our conclusions, because any continued fraction with partial
numerators di� erent from 1 can be transformed into a canon-
ical continued fraction using the Euler equivalent transforma-
tion [20]. Therefore, �nite canonical continued fractions rep-
resent all rational numbers in the sense that there is no rational
number that cannot be represented as a �nite canonical con-
tinued fraction. This universality of canonical continued frac-
tions evidences that the distribution of rational logarithms (1)
is fractal. As it is an inherent feature of the number contin-
uum, we call it theFundamental Fractal[14].

The �rst layer of this fractal is given by the truncated after
n1 continued fractions:

hn0; n1i = n0 +
1
n1

The denominatorsn1 follow the sequence of integer numbers
� 1, � 2, � 3 etc. The second layer is given by the truncated
aftern2 continued fractions:

hn0; n1;n2i = n0 +
1

n1 +
1
n2

Figure 1 shows the �rst and the second layer in comparison.
As we can see, reciprocal integers� 1=2; � 1=3; � 1=4; : : : are
the attractor points of the fractal. In these points, the distri-
bution density of rational logarithms (1) reaches a local max-
imum. Integers 0; � 1; � 2; : : : de�ne the main attractors hav-
ing the widest ranges. Half logarithms� 1=2 form smaller
attractor ranges, third logarithms� 1=3 form the next smaller
ranges and so forth. Increasing the length of the continued
fraction (1), the distribution density of the transcendental fre-
quency ratios! A=! B is increasing as well. Nevertheless, their
distribution is not homogeneous, but fractal. Applying con-
tinued fractions and truncating them, we can represent the
logarithms ln (! A=! B) as rational numbershn0; n1;n2; : : : ;nki
and make visible their fractal distribution.

The linear projectionE = exp (F ) of the fundamental
fractal (�g. 1) is a fractal scalar �eld of transcendental at-
tractors that we call theEuler �eld [3]. Figure 2 (central
part) shows the 2D-projection of its �rst layer. The Euler
�eld is topologically 3-dimensional, a fractal set of embedded
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Fig. 1: The distribution of rational logarithms fork= 1 (above) and
for k= 2 (below) in the range -16 F 6 1.

spheric equipotential surfaces. The potential di� erence de-
�nes a gradient directed to the center of the �eld that causes a
central force of attraction creating the e� ect of a �eld source.
Because of the fractal logarithmic hyperbolic metric of the
�eld, also every equipotential surface is an attractor. The log-
arithmic scalar potential di� erence� F of sequent equipoten-
tial surfaces equals the di� erence of sequent continued frac-
tions (1) on a given layer:

� F = hn0; n1; : : : ;nki � h n0; n1; : : : ;nk + 1i

Main equipotential surfaces atk = 0 correspond with inte-
ger logarithms; equipotential surfaces at deeper layersk > 0
correspond with rational logarithms.

The Euler �eld is of pure arithmetic origin, and there is
no particular physical mechanism required as �eld source.
Hence, we postulate the universality of the Euler �eld that
should a� ect any type of physical interaction, regardless of its
complexity. Corresponding with (1), the Euler �eld generates
a fractal set of transcendental frequency ratios! A=! B = E
which allow to avoid destabilizing parametric resonance and
in this way, provide the lasting stability of periodic processes
bound in systems regardless of their complexity. This con-
clusion we have exempli�ed [21] in particle physics, astro-
physics, geophysics, biophysics and engineering.

In several publications we have shown that the Euler �eld
determines the orbital periods of thousands of exoplanets and
large bodies in the solar system [3] as well as their gravi-
tational parameters [4]. Astrophysical and geophysical cy-
cles [22] as well as periodic biophysical processes [10] obey
the Euler �eld. Finally, the Euler �eld determines the proton-
to-electron ratio and the W/Z-to-electron ratio as well as the
temperature 2.725 K of the cosmic microwave background ra-
diation [14]. All these �ndings suggest that the cosmological
signi�cance of the Euler �eld is that of a universal stabilizer.

The radii of the equipotential surfaces of the Euler �eld
E = eF are integer and rational powers of Euler’s number.
However, not only Euler’s numbere = 2:71828: : : de�nes
a fractal scalar �eld of its integer and rational powers, but
in general, every prime, irrational and transcendental number
does it. While the fundamental fractal (�g. 1) is always the
same distribution of rational logarithms, the structure of the
corresponding fundamental �eld changes with the logarith-
mic base. Here it is important to notice that no fundamental
�eld can be transformed in another by scaling (stretching),
because loga(x) � log b(x) is a nonlinear function ofx. In this
way, every prime, irrational or transcendental number gener-
ates a unique fundamental �eld of its own integer and ratio-
nal powers that causes physical e� ects which are typical for

that number. For instance, the golden ratio� = h1; 1; 1; : : :i
makes di� cult its rational approximation, since its continued
fraction does not contain large denominators. Hence, the fun-
damental �eld of its integer and rational powers should be a
perfect inhibitor of resonance ampli�cation. We propose to
name this �eld after Hippasus of Metapontum who was an
ancient Greek philosopher and early follower of Pythagoras,
and is widely credited with the discovery of the existence of
irrational numbers, and the �rst proof of the irrationality of
the golden ratio. Figure 2 (left part) shows the 2D-projection
of the �rst layer of the Hippasus �eldH = � F .

Although the golden ratio is irrational, it is a Pisot num-
ber, so its powers are getting closer and closer to whole num-
bers. This is why the Hippasus �eld can inhibit resonance
within small frequency ranges only. Euler’s number is not
a Pisot number, so that the Euler �eld permits coupled peri-
odic processes to avoid parametric resonance also over very
large frequency ranges. Since the natural logarithm of the
golden ratio is close to 1/2, small powers of the golden ra-
tio can approximate main equipotential surfaces of the Euler
�eld. For example,� 2 = 2:618: : :can serve as approximation
of e = 2:718: : : Within small frequency ranges, this circum-
stance makes the Hippasus �eld a fast and simpli�ed local
approximation of the Euler �eld. In fact, as the continued
fraction of the golden ratio contains only the number 1, ap-
proximations of the golden ratio can be achieved faster than
approximations of Euler’s number, since every extension of
its continued fraction requires counting and additional com-
puting. Therefore, systems of coupled periodic processes fol-
low the Hippasus �eld within small frequency ranges only.
For example, several authors [23,24] have suggested that the
Venus-to-Earth orbital period ratio 0.615 approximates the
golden ratio 1/� = 0:618: : : preventing Earth and Venus from
parametric orbital resonance. However, the Hippasus �eld
cannot prevent the whole solar system from orbital resonance.
For instance, the Pluto-to-Venus orbital period ratio does not
obey a power of the golden ratio, but approximates the 6th

power of Euler’s number [10]. The 6th power of Euler’s num-
ber is in the range of the 12th power of the golden ratio that
approximates a whole number and hence cannot serve as a
scaling factor that prevents parametric resonance.

Obviously, in systems with many coupled periodic pro-
cesses, the Hippasus �eld can produce two opposing e� ects:
over small frequency ranges, the Hippasus �eld can inhibit
parametric resonance, but over large frequency ranges, it pro-
vides the long-period appearance of resonance ampli�cation.

Furthermore in this paper, we introduce the Archimedes
�eld A = � F . Figure 2 (right part) shows the 2D-projection
of its �rst layer. The radii of the equipotential surfaces of the
Archimedes �eld are integer and rational powers of� .

According to our numeric physical approach, we inter-
pret the fact that circumference/ radius= � in the way that
the transcendence of� makes possible circular motion. The
transcendence of the circumference avoids interruptions and
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makes impossible to de�ne the start or endpoint of motion.
Furthermore, Archimedes number� makes possible eternal
oscillation. This is why it is impossible tocompletelystop
oscillations, for example, the thermal oscillations of atoms.
According to our approach, the origin of the zero point en-
ergy phenomenon lies in the transcendence of� .

Proven by Theodor Schneider [25] in 1937, the perimeter
of an ellipse is transcendental. Elliptical or circular motion
is the only way to move with acceleration without propul-
sion. The absence of propulsion makes this motion eternal.
In this way, the transcendence of� makes possible eternal ac-
celerated motion. Hence, Archimedes’ number appears to be
a universal source of kinetic energy and promoter of orbital
and rotational motion.

In the framework of our approach, gravity is a physical
e� ect caused by numeric attractors [3]. They cause mass ac-
cretion forming a celestial body and determine its movement
in space and time. In this way, planets, stars, planetary sys-
tems and galaxies are materializations of numeric attractors.
These attractors exist long before a star or planet is formed.
In order to reach an attractor, the accelerated displacement of
matter causes the force conventionally interpreted as gravity.
Numeric attractors are primary; mass accretion is secondary.
In this way, gravitation is not caused by the body mass, and it
is not a physical property of a celestial body at all. We sup-
pose that fundamental numeric attractors cause all types of
physical interaction.

As well, the appearance of a �eld source is only a scal-
ing e� ect. A �eld is not created by a charge, but the charge
is a scaling e� ect of the �eld. The gradient of the �eld is
the force of attraction that indicates the location of the en-
ergy source. The attractor is the energy source. Matter falls
down to the attractor because in this way it gains energy. This
is why the core of a planet is hot. On the contrary, in the
assumption that mass is the source of gravity, and in accor-
dance with Newton’s shell theorem, the Preliminary Refer-
ence Earth Model [26] a� rms thedecreaseof the gravity ac-
celeration with the depth. However, this hypothesis is still
under discussion. In 1981, Stacey and Holding [27, 28] re-
ported anomalous measures (larger values than expected) of
the gravity acceleration in deep mines and boreholes.

According to our approach, the acceleration of free fall
shouldincreasewith the vicinity to the �eld singularity, but
follow the logarithmically hyperbolic fractal metric of the
fundamental numeric �eld. In [29] we have shown that the
Euler �eld reproduces the 3D pro�le of the Earth’s interior
con�rmed by seismic exploration. As well, the strati�cation
layers in planetary atmospheres follow the Euler �eld [30].

Are there attractors of the Euler �eld that coincide with
attractors of the Archimedes �eld? Sincee = 2:71828: : :
and � = 3:14159: : : are transcendental, there are no ratio-
nal powers of these numbers that can produce identical re-
sults. Therefore, in general, Archimedes-attractors are di� er-
ent from Euler-attractors. However, some of them are so close

to each other that they form common attractors. It is not di� -
cult to compute the exponents of two transcendental numbers
that de�ne a common attractor. The ratio of their logarithms
is a fractal dimension that equals D= ln � = 1:144729: : :
Representing D as continued fractionh1; 7; � 11; : : :i , we im-
mediately �nd 8/7 as the �rst approximation. Consequently,
multiples of 8/7 de�ne pairs of Euler-attractors of stability
and Archimedes-attractors of motion that are very close to
each other. For example, this is valid forEh56i andAh49i .
We will study this and other examples in the paragraphEx-
emplary Applications. Naturally, our description of possible
physical e� ects caused by the �eldsA ;E;H does not claim
to be complete.

Exemplary Applications

Let us start with an application of the Euler �eld that demon-
strates its ability of avoiding parametric resonance over ex-
tremely large scale-di� erences. For instance, Venus’ distance
from Sun approximates the main equipotential surfaceEeh54i
of the Euler �eld of theelectronthat equals the 54th power of
Euler’s number multiplied by the Compton wavelength of the
electron� e. The aphelion 0.728213 AU= 1:08939� 1011 m
delivers the upper approximation:

ln
 
AO(Venus)

� e

!
= ln

 
1:08939� 1011 m
3:86159� 10� 13 m

!
= 54:00

The perihelion 0.718440 AU= 1:07477� 1011 m delivers the
lower approximation:

ln
 
PO(Venus)

� e

!
= ln

 
1:07477� 1011 m
3:86159� 10� 13 m

!
= 53:98

This means that Venus’ orbit derives from the Euler �eld of
the electron. In other words, Venus’ orbit is of subatomic
origin. This is not a random coincidence. Jupiter’s distance
from Sun approximates the main equipotential surfaceEeh56i
of the same electron Euler �eld. The aphelion 5.45492 AU=
8:160444� 1011 m delivers the upper approximation:

ln
 
AO(Jupiter)

� e

!
= 56:01

The perihelion 4.95029 AU= 7:405528� 1011 m delivers the
lower approximation:

ln
 
PO(Jupiter)

� e

!
= 55:91

As well, Jupiter’s orbital period 4332.59 days derives from
the Euler �eld of the electron. In fact, it equals the 66th power
of Euler’s number multiplied by the oscillation period of the
electron (� e = � e=c = 1:28809� 10� 21 s is the angular oscilla-
tion period of the electron):

ln
 
TO(Jupiter)

2� � � e

!
= ln

 
4332:59 � 86400 s

2� � 1:28809� 10� 21 s

!
= 66:00
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Fig. 2: The image shows the 2D-projection of the �rst layer (k = 1) of equipotential surfaces of the Hippasos FieldH = � F (left), the Euler
FieldE = eF (center), and the Archimedes FieldA = � F (right) of the Fundamental FractalF . The �elds are shown to the same scale.

The same is valid for the orbital period 686.98 days (1.88
years) of the planet Mars that equals the 66th power of Euler’s
number multiplied by theangular oscillation period of the
electron:

ln
 
TO(Mars)

� e

!
= ln

 
686:98 � 86400 s
1:28809� 10� 21 s

!
= 66:00

Consequently, the ratio of the orbital periods of Jupiter and
Mars equals 2� :

TO(Jupiter) = 2� � TO(Mars)

This transcendental ratio allows Mars to avoid parametric or-
bital resonance with Jupiter and evidences that Jupiter and
Mars are not planets of di� erent systems, but bound together
in the same conservative system (the solar system).

Also the orbital period 224.701 days of Venus derives
from the Euler �eld of the electron, and it is stabilized by
the main attractorEeh63i :

ln
 
TO(Venus)

2� � � e

!
= 63:00

The complete (polar) rotational periodTR(S un) = 34 days of
the Sun approximates the same attractor:

ln
 
TR(S un)

� e

!
= 63:00

Consequently, the scaling factor 2� connects the orbital pe-
riod of Venus with the rotational period of the Sun:

TO(Venus) = 2� � TR(S un)

Needless to say that these numeric relations cannot be derived
from Kepler’s laws or Newton’s law of gravitation. Fig. 3
shows how Archimedes’ number bonds together rotational
and orbital periods. The scale symmetry of this connection
not only reveals the Sun as the engine of planetary motion,
but also the special role of Mercury. The connection of its
rotation with the orbital motion of the Earth is surprising and
encourages further investigation.

In general, orbital periods are stabilized by the Euler �eld
of the electron, and rotational periods by the Euler �eld of the
proton. For instance, the rotational periods of Earth and Mars
derive from the angular oscillation period� p = � p=c of the
proton (� p = 2:10309� 10� 16 m is the Compton wavelenght
of the proton). They approximate the same attractorEph67i .
Mars’ sidereal rotational period 24.62278 hours delivers the
upper approximation:

ln
 
TR(Mars)

� p

!
= ln

 
24:62278� 3600 s
7:01515� 10� 25 s

!
= 67:01

Earth’ sidereal rotational period 23.93447 hours delivers the
lower approximation:

ln
 
TR(Earth)

� p

!
= ln

 
23:93447� 3600 s
7:01515� 10� 25 s

!
= 66:98

It is notable that the proton-to-electron ratio itself approxi-
mates the 7th power of Euler’s number and its square root:

ln
 
� e

� p

!
= ln

 
3:86159� 10� 13 m
2:10309� 10� 16 m

!
’ 7 +

1
2

= Eh7; 2i

In the consequence of this potential di� erence of the proton
relative to the electron, the scaling factor

p
e = 1.64872. . .

connects Euler �eld attractors of proton stability with similar
attractors of electron stability in alternating sequence. In [4]
we have applied Khinchine’s [16] continued fraction method
of approximation to the proton-to-electron ratio.

As we mentioned in the paragraphTheoretical Approach,
multiples of 8/7 de�ne pairs of Euler-attractors of stability
and Archimedes-attractors of motion and energy that are very
close to each other. For example, this is valid forEeh56i and
A eh49i , because 56/49 = 8/7. This coincidence underlines
the signi�cance of the attractorEeh56i that determines the
orbit of the largest planet in the Solar system. If we apply
the exponent 49 to Euler’s number, we discover thatEeh49i
corresponds with the radius of the Sun. In this way, the co-
incidence ofEeh56i with A eh49i identi�es the Sun as energy
source and Jupiter as main orbital body of the Solar system.
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Fig. 3: From left to right: therotational periods of the Sun (S) and
Mercury (M), and theorbital periods of Venus (V), Earth (E), Mars
(M), Ceres (C), Jupiter (J), and Saturn (S), coupled by the scaling
factor 2� of the Archimedes �eld.

Interestingly, it is not the radius of the photosphere that coin-
cides with the equipotential surfaceEeh49i , but the radius of
the corona. It is noticeable that no complete theory yet exists
to account for the extremely high temperature of the corona
that reaches up to 20 million Kelvin. Despite great advances
in observations and modelling, the problem of solar and stel-
lar heating still remains one of the most challenging problems
of space physics [31]. According to our approach, this heat-
ing could be a physical e� ect caused by numeric attractors of
the Archimedes �eld.

Conclusion

According to our numeric-physical approach, numeric �elds
like A ;E are primary. Through their physical e� ects, they
not only determine the frequency ratios of elementary parti-
cles, but also the setting of orbital and rotational periods in
planetary systems. Modern theoretical physics is oriented to-
wards equations, even if they cannot be solved. The language
of equations is based on conservation rules, which, however,
describe the behavior of model processes under certain ideal
conditions of equilibrium. Nevertheless, the search for an
equation describing the observed process is often considered
a priority task of theoretical research. In this case, as a rule,
numerical ratios are considered random. We consider this
work to contribute to the idea that great uni�cation in physics
cannot be achieved as long as numerical ratios remain outside
the realm of theoretical interest.
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Proposed Laboratory Measurement of the Gravitational Repulsion
Predicted by Quantum Celestial Mechanics (QCM)

Franklin Potter
Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646 USA. E-mail: frank11hb@yahoo.com

Quantum Celestial Mechanics (QCM) predicts the quantization of the orbital angular
momentum per unit mass for bodies orbiting a central mass in response to attractive and
repulsive gravitational accelerations. Applications to the Solar System, multi-planet
exosystems, and to the Pluto system of 5 moons suggest its validity. A laboratory
experiment to check this constraint is proposed.

1 Introduction

The gravitational constantG has now been measured by sev-
eral new techniques, including a dynamic measurement by
resonating beams [1] and a simple pendulum laser interfer-
ometer [2]. Both methods as well as Advanced LIGO and
other gravitational sensors could also measure the repulsive
gravitational acceleration predicted by the quantization of an-
gular momentum per unit mass constraint [3] of Quantum Ce-
lestial Mechanics (QCM).

Although the Pluto system with its 5 satellites has already
been a de�nitive test of this constraint [4], and its successful
applications to the Solar System and numerous multi-planet
exosystems have been achieved [5], an Earth-bound labora-
tory measurement con�rmation is preferred.

According to QCM, which is derived from the general rel-
ativistic Hamilton-Jacobi equation, the quantization of orbital
angular momentumL per unit mass� constraint of the orbit-
ing body, with quantization integerm, depends upon the total
angular momentumLT for the system of total massMT as

L=� = m LT=MT : (1)

Recall that all orbits are equilibrium orbits for Newtonian
gravitation for a central massM and orbit distancer because
the radial acceleration

¤r = �
GM
r2 +

L2

� 2 r3 : (2)

But for QCM, the subset of allowed equilibrium orbits are the
ones that obey

¤r = �
GM
r2 +

m(m+ 1)L2
T

M2
T r3

(3)

for circular orbits. Therefore, a very small radial displace-
ment from the equilibrium radiusreq of orbit results in an
acceleration in the opposite direction.

2 Lab experiment parameters

In order to mimic a Keplerian circular orbit, one would place
an ideal rotating metal cylinder of massM and radiusR at

a distancer from the gravitational detector. A simple esti-
mation of the parameters for a laboratory scale measurement
is made by assuming that the detector is essentially a point
massMd responding instead of an extended geometrical ob-
ject. Therefore,

req =
m(m+ 1)L2

T

GM M2
T

�
m(m+ 1)R4! 2M

4G (M + Md)2 : (4)

Inserting some reasonable values:M = 5 kg,R = 5 cm,Md =
2 kg, andm = 1, the �rst equilibrium radius will be atreq �
4781! 2 metre. Forreq = 1 metre, i.e. �t in a lab room,

! u 0:0145 rad=s � 8:3 rot=hr : (5)

By varying the rotation rate! of the cylinder one can
sweep back and forth through several equilibrium radii for
m = 1; 2;3; ::: to observe attractive and repulsive accelera-
tions atreq = 2r0;6r0;12r0; ::: sensed by the detector, with
rapidly decreasing interaction accelerations with increasing
req.
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An Observational Test of Doppler’s Theory Using Solar-System Objects

John �Jack� D. Wilenchik
Phoenix, Arizona, USA. E-mail: wilenchik1@me.com

The scienti�c community widely accepted Christian Doppler’s theory that light
Doppler-shifts, even though it was proposed without empirical evidence and never
tested on objects with well-known velocities like solar-system planets and moons. I con-
ducted a test of Doppler’s theory on a handful of planets and moons (Venus, Ganymede,
Europa, and Ceres) using high-resolution data from the Keck Observatory’s High Res-
olution Echelle Spectrometer (HIRES). In doing so, I was careful not to apply the au-
tomatic Doppler (heliocentric) corrections for movement of the earth that are normally
applied when reducing such data. After comparing the observed shifts to actual veloc-
ities given by the NASA/JPL Horizons ephemeris system, I found both observations
that agreed and disagreed with their Doppler-predicted values, which is an indication
for more expansive tests. I also identi�ed a signi�cant problem with the Doppler ex-
planation for �inclined� spectral lines, which can be found in the spectra of Jupiter and
Saturn.

1 Introduction

This year is the 180th anniversary of Christian Doppler’s hy-
pothesis that colors of light shift due to movement by the
source or observer [4]. Doppler’s original paper describing
his hypothesis was purely theoretical, and it reached conclu-
sions that were quickly recognized as erroneous in their own
time. For example, Doppler suggested that the actual color
of every star was white or yellow, and that the stars’ appar-
ent colors (red, blue, etc.) were due solely to their radial ve-
locities with respect to the earth [4, §5].* Nevertheless, the
last sentence of his original paper proved to be prophetic: in
�[t]he distant future,� he wrote, his theory would �o� er as-
tronomers a welcome means of determining the motions and
distances� of distant stars and other objects whose velocities
are otherwise �immeasurable.� [4, §11].

The instruments of the 19th Century lacked the resolu-
tion needed to test Doppler’s theory on celestial objects with
known velocities, like solar-system planets and moons [8]. As
astronomer William Huggins wrote in 1868: �[t]he great rela-
tive velocity of light to the known planetary velocities, and to
the probable motions of the few stars of which the parallax is
known, showed that any alternations of position which might
be expected from [Doppler shift] in the lines of the stellar

* In 1868, astronomer William Huggins described Doppler’s error as
�obvious�: �Doppler endeavored...to account for the remarkable di� erences
of colour which some of the binary stars present, and for some other phe-
nomena of heavenly bodies. That Doppler was not correct in making this
application of his theory is obvious from the consideration that even if a star
could be conceived to be moving with a velocity su� cient to alter its colour
sensibly to the eye, still no change of colour would be perceived, for the rea-
son that beyond the visible spectrum, at both extremities, there exists a store
of invisible waves which would be at the same time exalted or degraded into
visibility, to take the place of the waves which had been raised or lowered in
refrangibility by the star’s motion. No change of colour, therefore, could take
place until the whole of those invisible waves of force had been expended,
which would only be the case when the relative motion of the source of light
and the observer was several times greater than that of light.� [8, p. 530-31].

spectra would not exceed a fraction of the interval between
the double line D [sodium doublet line D], for that part of
the spectrum.� [8, p. 530]. �I have devoted much time,� Hug-
gins continued, �[and] I hope to accomplish the detection of
so small an amount of change. . . [but] [t]he di� culties of this
investigation I have found to be very great. . . � [Id.]. The �rst
astronomer(s) to apply Doppler’s theory therefore focused on
targets whose velocities could not be rigorously and indepen-
dently measured, like distant stars and nebulae or gases on the
solar surface [7,8].

But a modern spectrometer like the Keck Observatory’s
�High Resolution Echelle Spectrometer� (HIRES) is more
than capable of performing the �William Huggins Test�. I re-
port the results of a test of Doppler’s theory on solar-system
planets and moons using the shift in their D lines, much like
William Huggins intended.

2 Methodology

I searched the Keck Observatory Archive (KOA)� for solar-
system data from the HIRES, particularly planets and moons
with low axial rotation [11]� . The HIRES has a precision
on the order of meters per second and has been heavily used
in searches for exoplanets; accordingly, its archives contain
comparatively few observations of solar-system objects [2,3].
A handful of observations were used: two observations of
Venus in 2007 and 2009, one of Ganymede in 2009, one of
Europa in 2009, and one of the dwarf planet Ceres in 2005.
The data for various observations of Mercury were also con-
sidered, but the signal-to-noise ratio was deemed to be too

� The Keck archive can be accessed from//koa.ipac.caltech.edu/cgi-
bin/KOA/nph-KOAlogin . The particular datasets used herein are identi�ed
in Appendix �A.�

� Rates of rotation were calculated from [1]; or in the case of Venus, also
from [6] (indicating that Venus’ atmosphere rotates sixty times faster than its
surface).
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low (and airmass too high) to be included in this exploratory
study.

The KOA o� ers data that has already been reduced and
extracted by the Keck Observatory �MAKEE� pipeline (�M-
Auna Kea Echelle Ex-traction�). However, that pipeline nor-
mally applies a �heliocentric correction� of up to around� 30
km/s, which is designed to account for the putative Doppler
e� ect of movement of the earth at the time of observation.
MAKEE can be run manually with heliocentric corrections
turned �o� �; and so I downloaded the same raw science and
calibration data that was used to generate the extracted data
in the archives, then I re-extracted it using MAKEE without
heliocentric corrections. Because I made no e� ort to account
for the e� ect of the bodies’ (or the earth’s) axial rotations on
Doppler shift, I treated it as a source of error in their calcu-
lated radial velocity (seeEcalc in Table 1). The speed of axial
rotation for each object in this study was between� 0:01 and
0.15 km/s, and earth’s rotation was estimated at 0.5 km/s, so
Ecalc was never greater than� 0:52 km/s. Putative relativistic
e� ects were calculated to be less than 0.01 km/s and therefore
neglected. Finally, the measured Doppler shift in the D lines
was compared to radial velocity as given by the NASA/JPL
Horizons ephemeris system. More details on methodology
are included in Appendix �A.�

3 Results

Figure 1 shows plots of the measured and calculated Doppler
shifts. While the Sodium absorption lines in Venus’ and Cer-
es’ atmospheres appeared at or near their Doppler-predicted
positions, the lines in Ganymede and Europa did not. The
mean absolute di� erence (weighted by error) in between mea-
sured (Doppler) and calculated (JPL Horizons) velocity for
Ganymede and Europa was 9:24 � 0:72 km/s. These results
are also shown in Table 1.

Space-based (Hubble) spectroscopy con�rms Na D ab-
sorption lines in the atmospheres of both Ganymede and Eu-
ropa* , which tends to discount telluric interference as a cause
for the discrepancy. Its magnitude (9.24 km/s) would also
tend to discount atmospheric winds and other internal dynam-
ics.

The discrepancy is less if the lines are compared to the
Doppler-predicted shift in solar light re�ecting from the body,
which is given by:

Rre f lect = Rhelio + Rcalc +
RhelioRcalc

c
(1)

(whereRhelio is the object’s heliocentric velocity,Rcalc is its
geocentric velocity, andc is the speed of lightin vacuo)� .
However, the bodies’ spectra do not show separate lines for
re�ected light (albedo) and light originating from the object,
as Doppler’s theory would predict.

* See Observation ID �o51u02040� (Ganymede) and �od9l140m0� (Eu-
ropa) in the ESA Hubble Science Archive, http://hst.esac.esa.int/ehst/.

� For a derivation of this equation, please see Appendix �B.�

Fig. 1: Plots of the shifts in the D lines (actual and pre-
dicted) for the �ve observations. Error is thinner than the
lines, except for the yellow lines (the predicted shifts in
albedo), which had more signi�cant error due to the cal-
culated rotation of the sun. (See alsoTable 1.)
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Fig. 1 (cont.)

3.1 Concerns with the Doppler modeling of planetary
spectral line inclinations

The spectra of Jupiter and Saturn are known to be �tilted�,
or to exhibit a linear inclination (Figure 2). Historically, the
cause of this inclination was deemed to be Doppler shift due
to each planet’s rotation about its own axis [5, 9]. However,
the radial velocities of points across a spherical rotating body
should exhibit a curved, sinusoidal pattern (Figure 3). The
observed �tilt� is always linear, which suggests a cause other
than Doppler shift.
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Fig. 2: At top left is an image of the spectrum of Sat-
urn taken on June 25, 2018. Below it is the corresponding
camera image of Saturn, which demonstrates the place-
ment of the spectroscopic slit across the face of the planet.
At top right is a spectrum of Jupiter taken on June 25,
2018, and below it is the corresponding camera image,
which again demonstrates placement of the slit. The lin-
ear inclination in both planets’ spectra is apparent. (Data
source: [10], observations nos. 224 and 225.).
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Fig. 3: At top (in gray) are illustrations of the expected
sinusoidal pattern of spectral lines that are Doppler-
shifted by the rotation of a spherical body. At bottom is
shown the corresponding placement of a theoretical spec-
troscopic �slit� on the planet’s surface.

4 Conclusion

Christian Doppler’s theory that light Doppler-shifts was ac-
cepted and widely applied without an observational test on
solar-system planets and moons, due to historical limitations
on the resolution of available spectrometers. This �Huggins
Test� used a small sample of modern high-resolution spec-
troscopic observations but nevertheless turned up observa-
tions that were inconsistent with their Doppler-predicted val-
ues. Further, there is substantial doubt concerning whether
the inclined spectral lines of bodies like Jupiter and Saturn
can be reasonably explained as a Doppler e� ect caused by
their axial rotation. These results support conducting more
expansive tests of the Doppler theory, using modern high-
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resolution spectroscopy on solar-system objects with well-
known velocities.
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Appendix �A�

Version 6.4 of �MAKEE� was used to extract and reduce
the Keck Archive data. The version of MAKEE that was
used is dated May 2019 and available for download from:
https://sites.astro.caltech.edu/� tb/makee/makee6.4-2019.
tar.gz.

MAKEE was run in a command terminal using Ubuntu
20.04.3 LTS. The MAKEE pipeline requires at least four �FI-
TS� (Flexible Image Transport System) images to reduce and
calibrate data: an image of the object; an image to �nd the
�trace� of the echelle orders (which can simply be the image
itself, although a star is often used); �at image(s); and an im-
age of the arc lamp for wavelength calibration. Each image
in the Keck Observatory Archive (KOA) is assigned a unique
�KOAID.� The KOAID for each of the raw science and cal-
ibration images used in this paper (as well as the CCD and
orders extracted) are listed in Table 2.

To remove the heliocentric correction, MAKEE was run
using the �-nohc� option. The �-koa� option was also used,
which outputs the processed data into �.tbl� �les. Finally,
in order to run MAKEE, the user must specify a CCD num-
ber to be extracted (using the �ccd=*� argument). The �nal
command for processing each observation was �makee [Ob-
ject.�ts] [Trace.�ts] [Flat.�ts] [Arc.�ts] ccd = [CCD No.] -
nohc -koa.� An optional �log=*.txt� argument sends the co-
mmand-line output into a �*.txt� �le.

After running MAKEE, the region of the Sodium D lines
(5890 � 5900 ¯) was identi�ed in the extracted orders. The
wavelength, �ux and error spectrum in the region of the D
line(s) was then manually extracted into a �.csv� �le (which
is contained in the Zenodo depository and named �*full.csv�
for each observation). In Observations No. 1 and 2 (Europa
and Ganymede), the D1 line fell beyond the extracted orders,
and so only the D2 lines were used. The D lines in Obser-
vation No. 5 fell across two di� erent orders; and so the data
in Order #7 was used for the D1 line and part of the D2 line,
with the remaining data for the D2 line coming from Order
#6. Postscript images of the orders for all extractions can be
found in the �logs� folder on Zenodo, along with the MAKEE
command-line output logs.
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Table 1: Summary of Observation Data and Results. (All velocities in km/s.)

Observation No. 1 2 3 4 5

Target Name Europa Ganymede Venus Venus Ceres
Epoch (UT) 12/13/09 4:56 12/11/09 4:53 6/6/07 5:32 1/7/09 4:33 6/17/05 5:54

Exposure (sec) 30 20 500 500 300
Keck Image ID HI.20091213.17797 HI.20091211.17597 HI.20070606.19972 HI.20090107.16390 HI.20050617.21254

Rcalc +30.05 +14.29 -14.04 -12.78 +16.89
Ecalc � 0:51 � 0:51 � 0:52 � 0:52 � 0:51

RDoppler +40.34 +6.09 -13.62 -13.88 +18.25
EDoppler � 0:03 � 0:05 � 0:17 � 0:36 � 0:48
� Doppler +10.29 -9.20 +0.42 -1.10 +1.36
E� Doppler � 0:51 � 0:51 � 0:55 � 0:63 � 0:70

Rhelio +7.83 -10.91 +0.23 -0.23 +1.43
Ehelio � 1:99 � 1:99 � 2:00 � 2:00 � 1:99

Rre f lect +37.82 +3.38 -13.81 -13.01 +18.32
Ere f lect � 2:05 � 2:05 � 2:07 � 2:07 � 2:05
� re f lect +2.52 +2.71 +0.19 -0.87 -0.07
E� re f lect � 2:05 � 2:05 � 2:07 � 2:10 � 2:11

A 1.52 1.47 1.72 1.76 1.25

Legend

Rcalc = the target object’s calculated geocentric velocity at the date and time of observation, from the NASA/JPL
Horizons ephemeris system.

Ecalc = uncertainty in the target’s calculated geocentric velocity, due to axial rotation of the earth and target body.
RDoppler = Doppler-measured radial velocity.
EDoppler = uncertainty in the Doppler-measured radial velocity (see Appendix �A� for methodology).
� Doppler = (RDoppler � Rcalc), i.e. the discrepancy in between Doppler-measured velocity (RDoppler) and Horizons-

calculated velocity (Rcalc).

E� Doppler = uncertainty in� Doppler, i.e.
q

(Ecalc)2 + (EDoppler)2.
Rhelio = target object’s calculated heliocentric velocity, based on the NASA/JPL Horizons ephemeris system.
Ehelio = error in the object’s heliocentric velocity due to rotation of the sun and target (which were combined in

quadrature). Solar rotation was estimated at ]pm1:99 km=s (based on values from [1]. I used a solar equa-
torial circumference of 2.720984 million miles, then divided by a rotation period of 26.24 days, to obtain a
rotational velocity at the solar equator of 1992.86 m/s.)

Rre f lect = predicted Doppler shift of solar light re�ecting from the target, given by (Rcalc + Rhelio).
Ere f lect = error inRre f lect, i.e.

p
(Ecalc)2 + (Ehelio)2.

� re f lect = RDoppler� Rre f lect, i.e. the di� erence in between Doppler-measured velocity (RDoppler) and predicted Doppler
shift in solar light re�ecting form the target (Rre f lect).

E� re f lect = uncertainty in� re f lect, i.e.
q

(Ehelio)2 + (EDoppler)2 + (Ecalc)2.
A = averaged airmass (as reported in the image’s FITS header).
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Table 2: Keck Observatory Archive Datasets

Observation No. 1 (Europa) 2 (Ganymede) 3 (Venus) 4 (Venus) 5 (Ceres)

Object KOIAD HI.20091213.17797 HI.20091211.17597 HI.20070606.19972 HI.20090107.16390 HI.20050617.21254
Trace (star) ID HI.20091213.08389 HI.20091211.10571 HI.20070607.01296 HI.20090107.16390 HI.20050616.06005
Flat KOAID HI.20091213.13363 HI.20091211.13478 HI.20070606.17769 HI.20090107.15456 HI.20050617.19496
Arc KOAID HI.20091213.10643 HI.20091211.12272 HI.20070606.16831 HI.20090107.01375 HI.20050617.11120

CCD 3 3 2 2 2
Order(s) 11 11 13 13 6,7

To calculate the parameters for a Gaussian �t to each of
the Sodium D lines, the �curve�t� function in Python’s SciPy
package was used (�SciPy: Scienti�c Library for Python�
version 1.7.3). The error spectrum in the MAKEE-generated
data tables (column #7, �Error�) was input as �sigma� in the
�curve �t� routine. This produced parameters for the best-�t
Gaussian function for each D line, as well as an estimated co-
variance. The standard deviation in the Gaussian centerline
was calculated from the covariance; and this standard devia-
tion was used for error in the measured Doppler shift of each
D line. Finally, for those observations in which both D lines
could be detected, an average of the two shifts was calculated
(weighted by error) to reach a �nal Doppler shift; and the er-
rors in the shift of each D line were combined in quadrature
to reach �nal error values.

Final shifts were recorded asRDoppler in Table 1, and �nal
errors were recorded asEDoppler. The Python code used for
these calculations is included in the �Zenodo� depository (as
�Doppler Test.py�), and when run it will reproduce the data
analysis and �gures used in this paper. Python version 3.9.7
was used.

Appendix �B�

The equation for �nding the predicted Doppler shift in solar
spectra that are being re�ected from a target under observa-
tion from the earth (Rre f lect), and expressed in terms of veloc-
ity (km/s), is:

Rre f lect = Rhelio + Rcalc +
RhelioRcalc

c
(2)

whereRhelio is the target’s heliocentric velocity,Rcalc is its
geocentric velocity, andc is the speed of lightin vacuo. To de-
rive this equation, we start with the general Doppler equation
for wavelength as a function of radial velocity, which rep-
resents the initial Doppler-shifted wavelength of solar light
reaching the target (� helio):

� helio =
Rhelio

c
� 0 + � 0 (3)

where � 0 the target’s wavelength at rest. To determine the
�nal observed wavelength after light re�ects from the target

(� observed), we must apply a second Doppler shift to account
for the target’s geocentric velocity:

� observed =
Rcalc

c
� helio + � helio (4)

� observed = � helio

� Rcalc

c
+ 1

�
: (5)

Finally, in order to express the observed wavelength as a shift
in velocity (Rre f lect), and as a function of the target’s heliocen-
tric and geocentric velocities, we must again use the Doppler
equation (this time solved for radial velocity) and make the
proper substitutions for� observed and� helio:

Rre f lect =
 
� observed � � 0

� 0

!
c (6)

Rre f lect =

0
BBBBBB@
� helio

�
Rcalc

c + 1
�

� � 0

� 0

1
CCCCCCAc (7)

Rre f lect =

0
BBBBBB@

�
Rhelio � 0

c + � 0
� �

Rcalc
c + 1

�
� � 0

� 0

1
CCCCCCAc (8)

Rre f lect =
� Rhelio

c
+ 1

�
(Rcalc + c) � c (9)

Rre f lect = Rhelio + Rcalc +
RhelioRcalc

c
: (10)
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On Action in the Spacetime Continuum

Pierre A. Millette
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In this paper, we investigate the role of actionS in the Spacetime Continuum (STC)
as provided by the Elastodynamics of the Spacetime Continuum (STCED). We �nd
that energy applies to three-dimensional space, while action applies to four-dimensional
spacetime. Planck’s reduced constant~corresponds to an elementary quantum of action
S0, with action units being the same as those of angular momentum. We thus �nd that
action is the fundamental four-dimensional spacetime scalar quantity corresponding to
energy for three-dimensional space. This helps explain why equations of motion in
the Spacetime Continuum are determined by minimizing action, not energy, using the
principle of least (or stationary) action. The contribution of a path, in the path integral
formulation of quantum mechanics and quantum �eld theory, depends on the number
of elementary quanta of actionS0 in the path.

1 Introduction

In this paper, we investigate the role of actionS in the Space-
time Continuum (STC) as provided by the Elastodynamics
of the Spacetime Continuum (STCED) [1�3]. STCEDis a
natural extension of Einstein’s General Theory of Relativ-
ity which blends continuum mechanical and general relativis-
tic descriptions of the Spacetime Continuum. The introduc-
tion of strains in the Spacetime Continuum as a result of the
energy-momentum stress tensor allows us to use, by analogy,
results from continuum mechanics, in particular the stress-
strain relation, to provide a better understanding of the gen-
eral relativistic spacetime.

2 Elastodynamics of the Spacetime Continuum

The stress-strain relation for an isotropic and homogeneous
Spacetime Continuum is given by [1,3]

2fl� 0 " �� + fl� 0 g�� " = T �� (1)

wherefl� 0 and fl� 0 are the Lam·e elastic constants of the Space-
time Continuum: fl� 0 is the shear modulus (the resistance of
the Spacetime Continuum todistortions) and fl� 0 is expressed
in terms of fl� 0, the bulk modulus (the resistance of the Space-
time Continuum todilatations), in a four-dimensional contin-
uum as:

fl� 0 = fl� 0 � 1
2 fl� 0 : (2)

T �� is the general relativistic energy-momentum stress tensor,
" �� the Spacetime Continuum strain tensor resulting from the
stresses, and

" = " �
� ; (3)

the trace of the strain tensor obtained by contraction, is the
volume dilatation" de�ned as the change in volume per orig-
inal volume [4, see pp. 149�152] and is an invariant of the
strain tensor. It should be noted that the structure of (1) is
similar to that of the �eld equations of general relativity,

R�� � 1
2 g�� R = � { T �� (4)

whereR�� is the Ricci curvature tensor,R is its trace,{ =
8� G=c4 andG is the gravitational constant (see [2, Ch. 2] for
more details).

In STCED, as shown in [1, 3], energy propagates in the
Spacetime Continuum as wave-likedeformationswhich can
be decomposed intodilatationsanddistortions. Dilatations
involve an invariant change in volume of the Spacetime Con-
tinuum which is the source of the associated rest-mass energy
density of the deformation. On the other hand,distortions
correspond to a change of shape (shearing) of the Spacetime
Continuum without a change in volume and are thus mass-
less.

Thus deformations propagate in the Spacetime Conti-
nuum by longitudinal (dilatation) and transverse (distortion)
wave displacements. This provides a natural explanation for
wave-particle duality, with the massless transverse mode cor-
responding to the wave aspects of the deformations and the
massive longitudinal mode corresponding to the particle as-
pects of the deformations.

The rest-mass energy density of the longitudinal mode is
given by [1, see Eq. (32)]

� c2 = 4fl� 0" (5)

where� is the rest-mass density,c is the speed of light, fl� 0 is
the bulk modulus of theSTCas seen previously, and" is the
volume dilatation given by (3).

3 Action in the Spacetime Continuum

In a previous paper [5], we considered dislocations in the
Spacetime Continuum as a framework for quantum physics.
In a subsequent paper [6], we expressed Planck’s constant in
terms of the Burgers spacetime dislocation constantb0, given
by

~ =
fl� 0 b4

0

c
; (6)

where fl� 0 is the Spacetime Continuum bulk modulus,b0 is the
Burgers spacetime dislocation constant,c is the speed of light
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